#include <bits/stdc++.h>
using namespace std;
#define el '\n'
const long double PI = acosl(-1);
const long double PI2 = acosl(-1)*2;
# define point complex<long double>
# define X real()
# define Y imag()
#define ld long double
#define int long long
long double dot(point a, point b){
return (conj(a) * b).X;
}
long double cross(point a, point b){
return (conj(a) * b).Y;
}
point cinP(){
double a,b; cin >> a >> b;
return point(a,b);
}
constexpr long double eps = 1e-8L;
bool iseq(ld a, ld b){
return abs(a-b) < eps;
}
point a,b;
bool iseq(point a, point b){
return (iseq(a.X, b.X) and iseq(a.Y, b.Y));
}
# define cfix(k) cout << fixed << setprecision(k) <<
void solve(){
long double r1,r2; cin >> r1;
b = cinP(); cin >> r2;
if(r2 > r1){swap(r1,r2); swap(a,b);}
point ab = b-a;
long double d = fabs(ab);
if(d + r2 - r1 < -eps or d - r1 - r2 > eps){
cout << "NO INTERSECTION" << el;
return;
}
if(iseq(a,b) and iseq(r1, r2)){
if(r1 < eps)cfix(3) a << el;
else
cout << "THE CIRCLES ARE THE SAME" << el;
return;
}
long double th = (-r2 * r2 + d * d + r1 * r1) / (2*d*r1);
th = acosl(th);
if(::isnan(th))th = 0;
point ans1 = ab / d * r1;
point ans2 = ans1 * polar((ld)1, th);
ans1 *= polar((ld)1, -th);
ans1 += a;
ans2 += a;
if(ans2.X - ans1.X < -eps){
swap(ans2, ans1);
}else if(iseq(ans1.X, ans2.X) and ans2.Y - ans1.Y < -eps)swap(ans1, ans2);
if(abs(ans1.X) < 1e-3) ans1 = point(0, ans1.Y);
if(abs(ans2.X) < 1e-3) ans2 = point(0, ans2.Y);
if(abs(ans2.Y) < 1e-3) ans2 = point(ans2.X, 0);
if(abs(ans1.Y) < 1e-3) ans1 = point(ans1.X, 0);
cfix(3) ans1;
if(!iseq(ans1, ans2))cfix(3) ans2;
cout << el;
}
signed main() {
ios_base::sync_with_stdio(false); cin.tie(nullptr);
// freopen("intersec1.in", "r", stdin);
// freopen("intersec1.out", "w", stdout);
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
freopen("error.txt", "w", stderr);
#endif
int t=1;
// cin >> t;
double x,y;
while(cin >> x >> y){
a = point(x,y);
solve();
}
}
/*
*/
I2luY2x1ZGUgPGJpdHMvc3RkYysrLmg+CnVzaW5nIG5hbWVzcGFjZSBzdGQ7CiNkZWZpbmUgZWwgJ1xuJwoKY29uc3QgbG9uZyBkb3VibGUgUEkgPSBhY29zbCgtMSk7CmNvbnN0IGxvbmcgZG91YmxlIFBJMiA9IGFjb3NsKC0xKSoyOwoKIyBkZWZpbmUgcG9pbnQgY29tcGxleDxsb25nIGRvdWJsZT4KIyBkZWZpbmUgWCByZWFsKCkKIyBkZWZpbmUgWSBpbWFnKCkKI2RlZmluZSBsZCBsb25nIGRvdWJsZQojZGVmaW5lIGludCBsb25nIGxvbmcgCmxvbmcgZG91YmxlIGRvdChwb2ludCBhLCBwb2ludCBiKXsKICAgIHJldHVybiAoY29uaihhKSAqIGIpLlg7Cn0KbG9uZyBkb3VibGUgY3Jvc3MocG9pbnQgYSwgcG9pbnQgYil7CiAgICByZXR1cm4gKGNvbmooYSkgKiBiKS5ZOwp9CnBvaW50IGNpblAoKXsKICAgIGRvdWJsZSBhLGI7IGNpbiA+PiBhID4+IGI7CiAgICByZXR1cm4gcG9pbnQoYSxiKTsKfQpjb25zdGV4cHIgbG9uZyBkb3VibGUgZXBzID0gMWUtOEw7Cgpib29sIGlzZXEobGQgYSwgbGQgYil7CiAgICByZXR1cm4gYWJzKGEtYikgPCBlcHM7Cn0KCnBvaW50IGEsYjsKYm9vbCBpc2VxKHBvaW50IGEsIHBvaW50IGIpewogICAgcmV0dXJuIChpc2VxKGEuWCwgYi5YKSBhbmQgaXNlcShhLlksIGIuWSkpOwp9CiMgZGVmaW5lIGNmaXgoaykgY291dCA8PCBmaXhlZCA8PCBzZXRwcmVjaXNpb24oaykgPDwgCnZvaWQgc29sdmUoKXsKICAgIGxvbmcgZG91YmxlIHIxLHIyOyBjaW4gPj4gcjE7CiAgICBiID0gY2luUCgpOyBjaW4gPj4gcjI7CiAgICBpZihyMiA+IHIxKXtzd2FwKHIxLHIyKTsgIHN3YXAoYSxiKTt9CiAgICBwb2ludCBhYiA9IGItYTsKICAgIGxvbmcgZG91YmxlIGQgPSBmYWJzKGFiKTsKICAgIGlmKGQgKyByMiAtIHIxIDwgLWVwcyBvciBkIC0gcjEgLSByMiA+IGVwcyl7CiAgICAgICAgY291dCA8PCAiTk8gSU5URVJTRUNUSU9OIiA8PCBlbDsKICAgICAgICByZXR1cm47CiAgICB9CiAgICBpZihpc2VxKGEsYikgYW5kIGlzZXEocjEsIHIyKSl7CiAgICAgICAgaWYocjEgPCBlcHMpY2ZpeCgzKSBhIDw8IGVsOwogICAgICAgIGVsc2UgCiAgICAgICAgICAgIGNvdXQgPDwgIlRIRSBDSVJDTEVTIEFSRSBUSEUgU0FNRSIgPDwgZWw7CiAgICAgICAgcmV0dXJuOwogICAgfQogICAgbG9uZyBkb3VibGUgdGggPSAoLXIyICogcjIgKyBkICogZCArIHIxICogcjEpIC8gKDIqZCpyMSk7CiAgICB0aCA9IGFjb3NsKHRoKTsKICAgIGlmKDo6aXNuYW4odGgpKXRoID0gMDsKICAgIHBvaW50IGFuczEgPSBhYiAvIGQgKiByMTsKICAgIHBvaW50IGFuczIgPSBhbnMxICogcG9sYXIoKGxkKTEsIHRoKTsKICAgIGFuczEgKj0gcG9sYXIoKGxkKTEsIC10aCk7CiAgICBhbnMxICs9IGE7CiAgICBhbnMyICs9IGE7CiAgICBpZihhbnMyLlggLSBhbnMxLlggPCAtZXBzKXsKICAgICAgICBzd2FwKGFuczIsIGFuczEpOwogICAgfWVsc2UgaWYoaXNlcShhbnMxLlgsIGFuczIuWCkgYW5kIGFuczIuWSAtIGFuczEuWSA8IC1lcHMpc3dhcChhbnMxLCBhbnMyKTsKCiAgICBpZihhYnMoYW5zMS5YKSA8IDFlLTMpIGFuczEgPSBwb2ludCgwLCBhbnMxLlkpOwogICAgaWYoYWJzKGFuczIuWCkgPCAxZS0zKSBhbnMyID0gcG9pbnQoMCwgYW5zMi5ZKTsKICAgIGlmKGFicyhhbnMyLlkpIDwgMWUtMykgYW5zMiA9IHBvaW50KGFuczIuWCwgMCk7CiAgICBpZihhYnMoYW5zMS5ZKSA8IDFlLTMpIGFuczEgPSBwb2ludChhbnMxLlgsIDApOwoKICAgIGNmaXgoMykgYW5zMTsKICAgIGlmKCFpc2VxKGFuczEsIGFuczIpKWNmaXgoMykgYW5zMjsKICAgIGNvdXQgPDwgZWw7Cgp9CgoKCnNpZ25lZCBtYWluKCkgewogICAgaW9zX2Jhc2U6OnN5bmNfd2l0aF9zdGRpbyhmYWxzZSk7IGNpbi50aWUobnVsbHB0cik7CgogICAgLy8gZnJlb3BlbigiaW50ZXJzZWMxLmluIiwgInIiLCBzdGRpbik7CiAgICAvLyBmcmVvcGVuKCJpbnRlcnNlYzEub3V0IiwgInciLCBzdGRvdXQpOwogICAgI2lmbmRlZiBPTkxJTkVfSlVER0UKICAgIGZyZW9wZW4oImlucHV0LnR4dCIsICJyIiwgc3RkaW4pOwogICAgZnJlb3Blbigib3V0cHV0LnR4dCIsICJ3Iiwgc3Rkb3V0KTsKICAgIGZyZW9wZW4oImVycm9yLnR4dCIsICJ3Iiwgc3RkZXJyKTsKICAgICNlbmRpZgoKICAgIGludCB0PTE7CiAgICAvLyBjaW4gPj4gdDsKICAgIGRvdWJsZSB4LHk7CiAgICB3aGlsZShjaW4gPj4geCA+PiB5KXsKICAgICAgICBhID0gcG9pbnQoeCx5KTsKICAgICAgICBzb2x2ZSgpOwogICAgfQp9CgovKgoKCiov