#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}
int digits(int n){
int cnt = 0;
while(n>0){
cnt++;
n /= 10;
}
return cnt;
}
void solve() {
int n;
cin>>n;
int A[n];
for(int i = 0 ; i<n ; i++){
cin>>A[i];
}
int sum = 0;
int totalsum = 0;
for(int i = 0 ; i<n ; i++){
int digits1 = digits(A[i]);
totalsum += ((((sum%MOD2)*power(10,digits1,MOD2))%MOD2)+((A[i]*i)%MOD2))%MOD2;
totalsum += (((A[i]*power(10,digits1,MOD2))%MOD2)+A[i])%MOD2;
sum += A[i];
}
sum = 0;
for(int i = n-1 ; i>=0 ; i--){
int digits1 = digits(A[i]);
totalsum += ((((sum%MOD2)*power(10,digits1,MOD2))%MOD2)+((A[i]*(n-i-1))%MOD2))%MOD2;
sum += A[i];
}
cout<<totalsum<<endl;
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nCmNvbnN0IGludCBNT0QgPSAxMDAwMDAwMDA3Owpjb25zdCBpbnQgTU9EMiA9IDk5ODI0NDM1MzsKY29uc3QgaW50IElORiA9IExMT05HX01BWCAvIDI7CmNvbnN0IGludCBNQVhOID0gMTAwMDAwOwppbnQgcHJpbWVzWzEwMDAwMDBdOwoKdm9pZCBzZWl2ZSgpIHsKICAgIGZpbGwocHJpbWVzLCBwcmltZXMgKyAxMDAwMDAwLCAxKTsKICAgIHByaW1lc1swXSA9IHByaW1lc1sxXSA9IDA7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPCAxMDAwMDAwOyBpKyspIHsKICAgICAgICBpZiAocHJpbWVzW2ldKSB7CiAgICAgICAgICAgIGZvciAoaW50IGogPSBpICogaTsgaiA8IDEwMDAwMDA7IGogKz0gaSkgewogICAgICAgICAgICAgICAgcHJpbWVzW2pdID0gMDsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgIH0KfQoKYm9vbCBpc1ByaW1lKGludCBuKSB7CiAgICBpZiAobiA8PSAxKSByZXR1cm4gZmFsc2U7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPD0gbjsgaSsrKSB7CiAgICAgICAgaWYgKG4gJSBpID09IDApIHJldHVybiBmYWxzZTsKICAgIH0KICAgIHJldHVybiB0cnVlOwp9CgppbnQgZ2NkKGludCBhLCBpbnQgYikgewogICAgaWYgKGEgPT0gMCkgcmV0dXJuIGI7CiAgICByZXR1cm4gZ2NkKGIgJSBhLCBhKTsKfQoKaW50IHBvd2VyKGludCBhLCBpbnQgYiwgaW50IG1vZCkgewogICAgaW50IHJlcyA9IDE7CiAgICBhICU9IG1vZDsKICAgIHdoaWxlIChiID4gMCkgewogICAgICAgIGlmIChiICYgMSkgcmVzID0gcmVzICogYSAlIG1vZDsKICAgICAgICBhID0gYSAqIGEgJSBtb2Q7CiAgICAgICAgYiA+Pj0gMTsKICAgIH0KICAgIHJldHVybiByZXM7Cn0KCi8vIG5DciAlIE1PRCBmb3IgbiA8IE1PRAppbnQgbkNyTW9kUChpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID4gbikgcmV0dXJuIDA7CiAgICBpZiAociA9PSAwIHx8IHIgPT0gbikgcmV0dXJuIDE7CgogICAgaW50IG51bWVyYXRvciA9IDEsIGRlbm9taW5hdG9yID0gMTsKICAgIGZvciAoaW50IGkgPSAwOyBpIDwgcjsgaSsrKSB7CiAgICAgICAgbnVtZXJhdG9yID0gKG51bWVyYXRvciAqIChuIC0gaSkpICUgTU9EOwogICAgICAgIGRlbm9taW5hdG9yID0gKGRlbm9taW5hdG9yICogKGkgKyAxKSkgJSBNT0Q7CiAgICB9CiAgICByZXR1cm4gKG51bWVyYXRvciAqIHBvd2VyKGRlbm9taW5hdG9yLCBNT0QgLSAyLCBNT0QpKSAlIE1PRDsKfQoKLy8gTHVjYXMncyBUaGVvcmVtCmludCBsdWNhcyhpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID09IDApIHJldHVybiAxOwogICAgcmV0dXJuIChsdWNhcyhuIC8gTU9ELCByIC8gTU9EKSAqIG5Dck1vZFAobiAlIE1PRCwgciAlIE1PRCkpICUgTU9EOwp9CmludCBkaWdpdHMoaW50IG4pewogICAgaW50IGNudCA9IDA7CiAgICB3aGlsZShuPjApewogICAgICAgIGNudCsrOwogICAgICAgIG4gLz0gMTA7CiAgICB9CiAgICByZXR1cm4gY250Owp9CnZvaWQgc29sdmUoKSB7CiAgICBpbnQgbjsKICAgIGNpbj4+bjsKICAgIGludCBBW25dOwogICAgZm9yKGludCBpID0gMCA7IGk8biA7IGkrKyl7CiAgICAgICAgY2luPj5BW2ldOwogICAgfQogICAgaW50IHN1bSA9IDA7CiAgICBpbnQgdG90YWxzdW0gPSAwOwogICAgZm9yKGludCBpID0gMCA7IGk8biA7IGkrKyl7CiAgICAgICAgaW50IGRpZ2l0czEgPSBkaWdpdHMoQVtpXSk7CiAgICAgICAgdG90YWxzdW0gKz0gKCgoKHN1bSVNT0QyKSpwb3dlcigxMCxkaWdpdHMxLE1PRDIpKSVNT0QyKSsoKEFbaV0qaSklTU9EMikpJU1PRDI7CiAgICAgICAgdG90YWxzdW0gKz0gKCgoQVtpXSpwb3dlcigxMCxkaWdpdHMxLE1PRDIpKSVNT0QyKStBW2ldKSVNT0QyOwogICAgICAgIHN1bSArPSBBW2ldOwogICAgfQogICAgc3VtID0gMDsKICAgIGZvcihpbnQgaSA9IG4tMSA7IGk+PTAgOyBpLS0pewogICAgICAgIGludCBkaWdpdHMxID0gZGlnaXRzKEFbaV0pOwogICAgICAgIHRvdGFsc3VtICs9ICgoKChzdW0lTU9EMikqcG93ZXIoMTAsZGlnaXRzMSxNT0QyKSklTU9EMikrKChBW2ldKihuLWktMSkpJU1PRDIpKSVNT0QyOwogICAgICAgIHN1bSArPSBBW2ldOwogICAgfQogICAgY291dDw8dG90YWxzdW08PGVuZGw7Cn0KCnNpZ25lZCBtYWluKCkgewogICAgaW9zOjpzeW5jX3dpdGhfc3RkaW8oZmFsc2UpOyBjaW4udGllKE5VTEwpOwogICAgaW50IHQ7CiAgICBjaW4gPj4gdDsKICAgIHdoaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgfQogICAgcmV0dXJuIDA7Cn0K