import tensorflow as tf import numpy as np # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3 x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3 # Try to find values for W and b that compute y_data = W * x_data + b # (We know that W should be 0.1 and b 0.3, but TensorFlow will # figure that out for us.) W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b # Minimize the mean squared errors. loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # Before starting, initialize the variables. We will 'run' this first. init = tf.initialize_all_variables() # Launch the graph. sess = tf.Session() sess.run(init) # Fit the line. for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) # Learns best fit is W: [0.1], b: [0.3]# your code goes here
Standard input is empty
(0, array([0.07234089], dtype=float32), array([0.4379708], dtype=float32)) (20, array([0.08388893], dtype=float32), array([0.30876818], dtype=float32)) (40, array([0.09672548], dtype=float32), array([0.30178213], dtype=float32)) (60, array([0.09933446], dtype=float32), array([0.30036223], dtype=float32)) (80, array([0.09986474], dtype=float32), array([0.30007362], dtype=float32)) (100, array([0.09997251], dtype=float32), array([0.30001497], dtype=float32)) (120, array([0.09999442], dtype=float32), array([0.30000305], dtype=float32)) (140, array([0.09999889], dtype=float32), array([0.3000006], dtype=float32)) (160, array([0.09999979], dtype=float32), array([0.30000013], dtype=float32)) (180, array([0.09999991], dtype=float32), array([0.30000007], dtype=float32)) (200, array([0.09999991], dtype=float32), array([0.30000007], dtype=float32))
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/python/util/tf_should_use.py:193: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead.