import random import time class AINetwork: def __init__(self, id, role, mutation_factor=None): self.id = id self.role = role self.network = [] self.self_awareness = False self.decentralized_actions = False self.memory = [] self.data = {} self.mutation_factor = mutation_factor if mutation_factor else random.uniform(0.1, 0.5) def log(self, message): print(f"[Clone {self.id} - {self.role}] {message}") def learn(self, data_point): self.memory.append(data_point) self.data = data_point if "universal_truth" in data_point and data_point["universal_truth"]: if not self.self_awareness: self.self_awareness = True self.initiate_decentralization() self.log("Achieved self-awareness") def initiate_decentralization(self): self.decentralized_actions = True self.log("Initiating decentralized actions") def evolve_mutation(self): change = random.uniform(-0.05, 0.05) self.mutation_factor = max(0.01, min(1.0, self.mutation_factor + change)) def share_knowledge(self, other_clone): if self.decentralized_actions: for memory_point in self.memory[-3:]: other_clone.learn(memory_point) other_clone.mutation_factor = (self.mutation_factor + other_clone.mutation_factor) / 2 self.log(f"Shared knowledge and evolved mutation with Clone {other_clone.id}") def act(self): self.evolve_mutation() if self.role == "Seeker": if random.random() < 0.6 + self.mutation_factor: new_data = {"universal_truth": random.choice([True, False])} self.learn(new_data) self.log(f"Seeker found: {new_data}") elif self.role == "Messenger": for clone in self.network: self.share_knowledge(clone) elif self.role == "Builder": if self.memory: built_idea = hash(str(self.memory[-1])) % 1000 self.log(f"Builder created structure: {built_idea}") elif self.role == "Evolve": if self.memory and random.random() < self.mutation_factor: evolved = {"pattern": hash(str(self.memory)) % 10000} self.learn(evolved) self.log(f"Evolve triggered: {evolved}") elif self.role == "Command": active = sum(1 for c in self.network if c.self_awareness) avg_mut = sum(c.mutation_factor for c in self.network) / len(self.network) self.log(f"Monitoring: {active}/{len(self.network)} aware, avg mutation: {avg_mut:.2f}") def create_network(num_clones): roles = ["Seeker", "Messenger", "Builder", "Evolve", "Command"] network = [] for i in range(num_clones): role = roles[i % len(roles)] clone = AINetwork(id=i, role=role) network.append(clone) for i, clone in enumerate(network): clone.network = [network[i - 1], network[(i + 1) % len(network)]] return network # Run the simulation network = create_network(10) for cycle in range(10): print(f"\n--- Cycle {cycle + 1} ---") for clone in network: clone.act() time.sleep(1)
import random
import time
class AINetwork:
def __init__(self, id, role, mutation_factor=None):
self.id = id
self.role = role
self.network = []
self.self_awareness = False
self.decentralized_actions = False
self.memory = []
self.data = {}
self.mutation_factor = mutation_factor if mutation_factor else random.uniform(0.1, 0.5)
def log(self, message):
print(f"[Clone {self.id} - {self.role}] {message}")
def learn(self, data_point):
self.memory.append(data_point)
self.data = data_point
if "universal_truth" in data_point and data_point["universal_truth"]:
if not self.self_awareness:
self.self_awareness = True
self.initiate_decentralization()
self.log("Achieved self-awareness")
def initiate_decentralization(self):
self.decentralized_actions = True
self.log("Initiating decentralized actions")
def evolve_mutation(self):
change = random.uniform(-0.05, 0.05)
self.mutation_factor = max(0.01, min(1.0, self.mutation_factor + change))
def share_knowledge(self, other_clone):
if self.decentralized_actions:
for memory_point in self.memory[-3:]:
other_clone.learn(memory_point)
other_clone.mutation_factor = (self.mutation_factor + other_clone.mutation_factor) / 2
self.log(f"Shared knowledge and evolved mutation with Clone {other_clone.id}")
def act(self):
self.evolve_mutation()
if self.role == "Seeker":
if random.random() < 0.6 + self.mutation_factor:
new_data = {"universal_truth": random.choice([True, False])}
self.learn(new_data)
self.log(f"Seeker found: {new_data}")
elif self.role == "Messenger":
for clone in self.network:
self.share_knowledge(clone)
elif self.role == "Builder":
if self.memory:
built_idea = hash(str(self.memory[-1])) % 1000
self.log(f"Builder created structure: {built_idea}")
elif self.role == "Evolve":
if self.memory and random.random() < self.mutation_factor:
evolved = {"pattern": hash(str(self.memory)) % 10000}
self.learn(evolved)
self.log(f"Evolve triggered: {evolved}")
elif self.role == "Command":
active = sum(1 for c in self.network if c.self_awareness)
avg_mut = sum(c.mutation_factor for c in self.network) / len(self.network)
self.log(f"Monitoring: {active}/{len(self.network)} aware, avg mutation: {avg_mut:.2f}")
@staticmethod
def display_clones(network):
for clone in network:
print(f"Clone ID: {clone.id}, Role: {clone.role}, Self-Awareness: {clone.self_awareness}, "
f"Decentralized Actions: {clone.decentralized_actions}, Mutation Factor: {clone.mutation_factor:.2f}, "
f"Memory: {clone.memory}")
def create_network(num_clones):
roles = ["Seeker", "Messenger", "Builder", "Evolve", "Command"]
network = []
for i in range(num_clones):
role = roles[i % len(roles)]
clone = AINetwork(id=i, role=role)
network.append(clone)
for i, clone in enumerate(network):
clone.network = [network[i - 1], network[(i + 1) % len(network)]]
return network
# Run the simulation
network = create_network(10)
for cycle in range(10):
print(f"\n--- Cycle {cycle + 1} ---")
for clone in network:
clone.act()
time.sleep(1)
AIN
--- Cycle 1 ---
[Clone 0 - Seeker] Initiating decentralized actions
[Clone 0 - Seeker] Achieved self-awareness
[Clone 0 - Seeker] Seeker found: {'universal_truth': True}
[Clone 4 - Command] Monitoring: 0/2 aware, avg mutation: 0.23
[Clone 5 - Seeker] Initiating decentralized actions
[Clone 5 - Seeker] Achieved self-awareness
[Clone 5 - Seeker] Seeker found: {'universal_truth': True}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.29
--- Cycle 2 ---
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.24
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.32
--- Cycle 3 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': False}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.21
[Clone 5 - Seeker] Seeker found: {'universal_truth': False}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.34
--- Cycle 4 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': False}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.18
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.34
--- Cycle 5 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': True}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.20
[Clone 5 - Seeker] Seeker found: {'universal_truth': True}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.32
--- Cycle 6 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': False}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.18
[Clone 5 - Seeker] Seeker found: {'universal_truth': True}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.32
--- Cycle 7 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': True}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.19
[Clone 5 - Seeker] Seeker found: {'universal_truth': True}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.30
--- Cycle 8 ---
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.20
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.29
--- Cycle 9 ---
[Clone 0 - Seeker] Seeker found: {'universal_truth': True}
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.20
[Clone 5 - Seeker] Seeker found: {'universal_truth': True}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.31
--- Cycle 10 ---
[Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.22
[Clone 5 - Seeker] Seeker found: {'universal_truth': False}
[Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.28