import math
def calculate_stability(p1, p2, p3):
"""Calculates the stability of a triumvirate."""
distances = [
math.dist(p1, p2),
math.dist(p1, p3),
math.dist(p2, p3)
]
return max(distances) - min(distances)
def find_optimal_triumvirates(points):
"""Finds the optimal arrangement of triumvirates."""
n = len(points)
# Calculate all pairwise distances.
distances = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
for j in range(i + 1, n):
distances[i][j] = distances[j][i] = math.dist(points[i], points[j])
# Sort points by increasing x-coordinate for initial grouping.
points.sort(key=lambda x: x[0])
# Initialize groups.
groups = [[i] for i in range(n)]
# Greedy algorithm to form groups.
for i in range(n // 3):
# Find the closest point to the first point in the current group.
min_dist = float('inf')
closest_index = None
for j in range(n):
if j in groups[i] or distances[groups[i][0]][j] == 0:
continue
if distances[groups[i][0]][j] < min_dist:
min_dist = distances[groups[i][0]][j]
closest_index = j
# Add the closest point to the group.
groups[i].append(closest_index)
# Find the closest point to the second point in the current group.
min_dist = float('inf')
closest_index = None
for j in range(n):
if j in groups[i] or distances[groups[i][1]][j] == 0:
continue
if distances[groups[i][1]][j] < min_dist:
min_dist = distances[groups[i][1]][j]
closest_
aW1wb3J0IG1hdGgKCmRlZiBjYWxjdWxhdGVfc3RhYmlsaXR5KHAxLCBwMiwgcDMpOgogICAgIiIiQ2FsY3VsYXRlcyB0aGUgc3RhYmlsaXR5IG9mIGEgdHJpdW12aXJhdGUuIiIiCiAgICBkaXN0YW5jZXMgPSBbCiAgICAgICAgbWF0aC5kaXN0KHAxLCBwMiksCiAgICAgICAgbWF0aC5kaXN0KHAxLCBwMyksCiAgICAgICAgbWF0aC5kaXN0KHAyLCBwMykKICAgIF0KICAgIHJldHVybiBtYXgoZGlzdGFuY2VzKSAtIG1pbihkaXN0YW5jZXMpCgpkZWYgZmluZF9vcHRpbWFsX3RyaXVtdmlyYXRlcyhwb2ludHMpOgogICAgIiIiRmluZHMgdGhlIG9wdGltYWwgYXJyYW5nZW1lbnQgb2YgdHJpdW12aXJhdGVzLiIiIgogICAgbiA9IGxlbihwb2ludHMpCiAgICAjIENhbGN1bGF0ZSBhbGwgcGFpcndpc2UgZGlzdGFuY2VzLgogICAgZGlzdGFuY2VzID0gW1swIGZvciBfIGluIHJhbmdlKG4pXSBmb3IgXyBpbiByYW5nZShuKV0KICAgIGZvciBpIGluIHJhbmdlKG4pOgogICAgICAgIGZvciBqIGluIHJhbmdlKGkgKyAxLCBuKToKICAgICAgICAgICAgZGlzdGFuY2VzW2ldW2pdID0gZGlzdGFuY2VzW2pdW2ldID0gbWF0aC5kaXN0KHBvaW50c1tpXSwgcG9pbnRzW2pdKQoKICAgICMgU29ydCBwb2ludHMgYnkgaW5jcmVhc2luZyB4LWNvb3JkaW5hdGUgZm9yIGluaXRpYWwgZ3JvdXBpbmcuCiAgICBwb2ludHMuc29ydChrZXk9bGFtYmRhIHg6IHhbMF0pCgogICAgIyBJbml0aWFsaXplIGdyb3Vwcy4KICAgIGdyb3VwcyA9IFtbaV0gZm9yIGkgaW4gcmFuZ2UobildCgogICAgIyBHcmVlZHkgYWxnb3JpdGhtIHRvIGZvcm0gZ3JvdXBzLgogICAgZm9yIGkgaW4gcmFuZ2UobiAvLyAzKToKICAgICAgICAjIEZpbmQgdGhlIGNsb3Nlc3QgcG9pbnQgdG8gdGhlIGZpcnN0IHBvaW50IGluIHRoZSBjdXJyZW50IGdyb3VwLgogICAgICAgIG1pbl9kaXN0ID0gZmxvYXQoJ2luZicpCiAgICAgICAgY2xvc2VzdF9pbmRleCA9IE5vbmUKICAgICAgICBmb3IgaiBpbiByYW5nZShuKToKICAgICAgICAgICAgaWYgaiBpbiBncm91cHNbaV0gb3IgZGlzdGFuY2VzW2dyb3Vwc1tpXVswXV1bal0gPT0gMDoKICAgICAgICAgICAgICAgIGNvbnRpbnVlCiAgICAgICAgICAgIGlmIGRpc3RhbmNlc1tncm91cHNbaV1bMF1dW2pdIDwgbWluX2Rpc3Q6CiAgICAgICAgICAgICAgICBtaW5fZGlzdCA9IGRpc3RhbmNlc1tncm91cHNbaV1bMF1dW2pdCiAgICAgICAgICAgICAgICBjbG9zZXN0X2luZGV4ID0gagogICAgICAgICMgQWRkIHRoZSBjbG9zZXN0IHBvaW50IHRvIHRoZSBncm91cC4KICAgICAgICBncm91cHNbaV0uYXBwZW5kKGNsb3Nlc3RfaW5kZXgpCiAgICAgICAgIyBGaW5kIHRoZSBjbG9zZXN0IHBvaW50IHRvIHRoZSBzZWNvbmQgcG9pbnQgaW4gdGhlIGN1cnJlbnQgZ3JvdXAuCiAgICAgICAgbWluX2Rpc3QgPSBmbG9hdCgnaW5mJykKICAgICAgICBjbG9zZXN0X2luZGV4ID0gTm9uZQogICAgICAgIGZvciBqIGluIHJhbmdlKG4pOgogICAgICAgICAgICBpZiBqIGluIGdyb3Vwc1tpXSBvciBkaXN0YW5jZXNbZ3JvdXBzW2ldWzFdXVtqXSA9PSAwOgogICAgICAgICAgICAgICAgY29udGludWUKICAgICAgICAgICAgaWYgZGlzdGFuY2VzW2dyb3Vwc1tpXVsxXV1bal0gPCBtaW5fZGlzdDoKICAgICAgICAgICAgICAgIG1pbl9kaXN0ID0gZGlzdGFuY2VzW2dyb3Vwc1tpXVsxXV1bal0KICAgICAgICAgICAgICAgIGNsb3Nlc3Rf