#include<bits/stdc++.h>
using namespace std;
// tle eleminators video;
// min number generated by 4 divisiors, more divisors bigger the number so, we need exactly 4 divisiors
// there is this formula of combimetrics which states that the divios if number n is combination of
// prime numebrs to its powers somthing like that
//by that logic
// divisior logic theorem
//(alpha +1)*(beta +1)*(gamma+1)*(delta+1) == 4
// case 1 : 4 * 1 * 1 * 1 e.g. 1 3 9 27
// case 2: 2 * 2 * 1 * 1 e.g. 1 3 7 21
// by that logic to have
long long next_prime(long long n){
for(long long i = n;;i++){// dont have second term because it will eventually break to some primr number// preetiliy explained in tle video
bool isprime = true;
for(long long j =2 ; j*j <= i; j++){// j= 2 bcz 1 is not prime number
if(i%j == 0){
isprime =false;
break;
}
}
if(isprime){
return i;
}
}
}
int main() {
int t;
cin>>t;
while(t--){
long long d;
cin>>d;
// case 1 : 1 p p^2 p^3
//case 2;
// 1 p q pq
//p-1 >=d q-p >=d
long long p = next_prime(d+1);//O(1000)
long long q = next_prime(d+p);//O(1000)
long long a = min(p*p*p , p*q);
cout<<a<<endl;
}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKLy8gdGxlIGVsZW1pbmF0b3JzIHZpZGVvOwovLyBtaW4gbnVtYmVyIGdlbmVyYXRlZCBieSA0IGRpdmlzaW9ycywgbW9yZSBkaXZpc29ycyBiaWdnZXIgdGhlIG51bWJlciBzbywgd2UgbmVlZCBleGFjdGx5IDQgZGl2aXNpb3JzCgovLyB0aGVyZSBpcyB0aGlzIGZvcm11bGEgb2YgY29tYmltZXRyaWNzIHdoaWNoIHN0YXRlcyB0aGF0IHRoZSBkaXZpb3MgaWYgbnVtYmVyIG4gaXMgY29tYmluYXRpb24gb2YgCgkvLyBwcmltZSBudW1lYnJzIHRvIGl0cyBwb3dlcnMgc29tdGhpbmcgbGlrZSB0aGF0CgkvL2J5IHRoYXQgbG9naWMKCS8vIGRpdmlzaW9yIGxvZ2ljIHRoZW9yZW0KCS8vKGFscGhhICsxKSooYmV0YSArMSkqKGdhbW1hKzEpKihkZWx0YSsxKSA9PSA0CgkKCS8vIGNhc2UgMSA6IDQgKiAxICogMSAqIDEgZS5nLiAxIDMgOSAyNwoJLy8gY2FzZSAyOiAgMiAqIDIgKiAxICogMSBlLmcuIDEgMyA3IDIxCgkvLyBieSB0aGF0IGxvZ2ljIHRvIGhhdmUgCgpsb25nIGxvbmcgbmV4dF9wcmltZShsb25nIGxvbmcgbil7CgkKCWZvcihsb25nIGxvbmcgaSA9IG47O2krKyl7Ly8gZG9udCBoYXZlIHNlY29uZCB0ZXJtIGJlY2F1c2UgaXQgd2lsbCBldmVudHVhbGx5IGJyZWFrIHRvIHNvbWUgcHJpbXIgbnVtYmVyLy8gcHJlZXRpbGl5IGV4cGxhaW5lZCBpbiB0bGUgdmlkZW8KCQlib29sIGlzcHJpbWUgPSB0cnVlOwoJCWZvcihsb25nIGxvbmcgaiA9MiA7IGoqaiA8PSBpOyBqKyspey8vIGo9IDIgYmN6IDEgaXMgbm90IHByaW1lIG51bWJlcgoJCQlpZihpJWogPT0gMCl7CgkJCQlpc3ByaW1lID1mYWxzZTsKCQkJCWJyZWFrOwoJCQl9CgkJfQoJCQoJCWlmKGlzcHJpbWUpewoJCQlyZXR1cm4gaTsKCQl9CgkKCQkKCX0KCQp9CgoKaW50IG1haW4oKSB7CmludCB0OwpjaW4+PnQ7CndoaWxlKHQtLSl7Cglsb25nIGxvbmcgZDsKCWNpbj4+ZDsKCS8vIGNhc2UgMSA6IDEgcCBwXjIgcF4zCgkKCS8vY2FzZSAyOwoJLy8gMSBwIHEgcHEKCS8vcC0xID49ZCAgcS1wID49ZAoJbG9uZyBsb25nIHAgPSBuZXh0X3ByaW1lKGQrMSk7Ly9PKDEwMDApCglsb25nIGxvbmcgcSA9IG5leHRfcHJpbWUoZCtwKTsvL08oMTAwMCkKCQoJbG9uZyBsb25nIGEgPSBtaW4ocCpwKnAgLCBwKnEpOwoJCgljb3V0PDxhPDxlbmRsOwp9CnJldHVybiAwOwp9