fork download
  1.  
  2. # Define the testing area dimensions
  3. width (x) == 1000
  4. height (y) == 600
  5.  
  6. # Create a grid system for the testing area
  7. grid_size = (width / 10), (height / 10)
  8.  
  9. # Draw the grid on the canvas
  10. for x in range(width):
  11. for y in range(height):
  12. ctx.fillStyle = 'gray'
  13. ctx.fillRect(x * grid_size[0], y * grid_size[1], grid_size[0], grid_size[1])
  14. // Define the icon sizes and positions
  15. icon_size = 50;
  16. icon_position = [30, 30];
  17.  
  18. // Draw the icons on the canvas
  19. for key in Object.keys(programmingConcepts):
  20. ctx.fillStyle = 'blue';
  21. ctx.font = '24px Arial';
  22. ctx.textBaseline = 'middle';
  23. ctx.textAlign = 'center';
  24. ctx.fillText(programmingConcepts[key], icon_position[0] + icon_size / 2, icon_position[1] +
  25. icon_size / 2);
  26. // Define the voice command functions
  27. function speakText(text) {
  28. speechSynthesis.speak(text);
  29. }
  30.  
  31. // Add a voice command button to the UI
  32. ctx.fillStyle = 'red';
  33. ctx.font = '30px Arial';
  34. ctx.textAlign = 'center';
  35. ctx.textBaseline = 'middle';
  36. ctx.fillText('Speak Text', 100, 100);
  37.  
  38. // Add a listener to the button
  39. document.getElementById('speak-button').addEventListener('click', function() {
  40. speakText('Hello, world!');
  41. });
  42. // Define the animation function
  43. function animate(context) {
  44. context.fillStyle = 'red';
  45. context.fillRect(0, 0, width, height);
  46. context.globalAlpha = 0.5;
  47. context.fillStyle = 'green';
  48. context.fillRect(50, 50, 100, 100);
  49. context.globalAlpha = 1;
  50. }
  51.  
  52. // Add the animation to the UI
  53. ctx.addEventListener('compilation-complete', function() {
  54. animate(ctx);
  55. });
  56. // Define the layer functions
  57. function layer1() {
  58. ctx.fillStyle = 'red';
  59. ctx.fillRect(0, 0, width, height);
  60. }
  61.  
  62. function layer2() {
  63. ctx.fillStyle = 'blue';
  64. ctx.fillRect(50, 50, 100, 100);
  65. }
  66.  
  67. // Add the layers to the UI
  68. ctx.addEventListener('compilation-complete', function() {
  69. layer1();
  70. layer2();
  71. });
  72. # Import the necessary libraries
  73. from sklearn.externals import TfidfVectorizer
  74. from sklearn.naive_bayes import MultinomialNB
  75. from sklearn.metrics import accuracy_score
  76.  
  77. # Define the error correction function
  78. def correctError(code) {
  79. # Preprocess the code using TF-IDF vectorization
  80. vectorized_code = TfidfVectorizer().fit_transform(code).tokens_set()
  81.  
  82. # Use Naive Bayes to classify the errors in the code
  83. nbb = MultinomialNB().fit(vectorized_code)
  84. predictions = nbb.predict(vectorized_code)
  85.  
  86. # Return the corrected code
  87. return corrections[predictions]
  88. }
Success #stdin #stdout 0.02s 25560KB
stdin
Standard input is empty
stdout
# Define the testing area dimensions
width (x) == 1000
height (y) == 600

# Create a grid system for the testing area
grid_size = (width / 10), (height / 10)

# Draw the grid on the canvas
for x in range(width):
    for y in range(height):
        ctx.fillStyle = 'gray'
        ctx.fillRect(x * grid_size[0], y * grid_size[1], grid_size[0], grid_size[1])
// Define the icon sizes and positions
icon_size = 50;
icon_position = [30, 30];

// Draw the icons on the canvas
for key in Object.keys(programmingConcepts):
    ctx.fillStyle = 'blue';
    ctx.font = '24px Arial';
    ctx.textBaseline = 'middle';
    ctx.textAlign = 'center';
    ctx.fillText(programmingConcepts[key], icon_position[0] + icon_size / 2, icon_position[1] +
icon_size / 2);
// Define the voice command functions
function speakText(text) {
    speechSynthesis.speak(text);
}

// Add a voice command button to the UI
ctx.fillStyle = 'red';
ctx.font = '30px Arial';
ctx.textAlign = 'center';
ctx.textBaseline = 'middle';
ctx.fillText('Speak Text', 100, 100);

// Add a listener to the button
document.getElementById('speak-button').addEventListener('click', function() {
    speakText('Hello, world!');
});
// Define the animation function
function animate(context) {
    context.fillStyle = 'red';
    context.fillRect(0, 0, width, height);
    context.globalAlpha = 0.5;
    context.fillStyle = 'green';
    context.fillRect(50, 50, 100, 100);
    context.globalAlpha = 1;
}

// Add the animation to the UI
ctx.addEventListener('compilation-complete', function() {
    animate(ctx);
});
// Define the layer functions
function layer1() {
    ctx.fillStyle = 'red';
    ctx.fillRect(0, 0, width, height);
}

function layer2() {
    ctx.fillStyle = 'blue';
    ctx.fillRect(50, 50, 100, 100);
}

// Add the layers to the UI
ctx.addEventListener('compilation-complete', function() {
    layer1();
    layer2();
});
# Import the necessary libraries
from sklearn.externals import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score

# Define the error correction function
def correctError(code) {
    # Preprocess the code using TF-IDF vectorization
    vectorized_code = TfidfVectorizer().fit_transform(code).tokens_set()

    # Use Naive Bayes to classify the errors in the code
    nbb = MultinomialNB().fit(vectorized_code)
    predictions = nbb.predict(vectorized_code)

    # Return the corrected code
    return corrections[predictions]
}