# Define the testing area dimensions width (x) == 1000 height (y) == 600 # Create a grid system for the testing area grid_size = (width / 10), (height / 10) # Draw the grid on the canvas ctx.fillStyle = 'gray' ctx.fillRect(x * grid_size[0], y * grid_size[1], grid_size[0], grid_size[1]) // Define the icon sizes and positions icon_size = 50; icon_position = [30, 30]; // Draw the icons on the canvas ctx.fillStyle = 'blue'; ctx.font = '24px Arial'; ctx.textBaseline = 'middle'; ctx.textAlign = 'center'; icon_size / 2); // Define the voice command functions function speakText(text) { speechSynthesis.speak(text); } // Add a voice command button to the UI ctx.fillStyle = 'red'; ctx.font = '30px Arial'; ctx.textAlign = 'center'; ctx.textBaseline = 'middle'; ctx.fillText('Speak Text', 100, 100); // Add a listener to the button document.getElementById('speak-button').addEventListener('click', function() { speakText('Hello, world!'); }); // Define the animation function function animate(context) { context.fillStyle = 'red'; context.fillRect(0, 0, width, height); context.globalAlpha = 0.5; context.fillStyle = 'green'; context.fillRect(50, 50, 100, 100); context.globalAlpha = 1; } // Add the animation to the UI ctx.addEventListener('compilation-complete', function() { animate(ctx); }); // Define the layer functions function layer1() { ctx.fillStyle = 'red'; ctx.fillRect(0, 0, width, height); } function layer2() { ctx.fillStyle = 'blue'; ctx.fillRect(50, 50, 100, 100); } // Add the layers to the UI ctx.addEventListener('compilation-complete', function() { layer1(); layer2(); }); # Import the necessary libraries from sklearn.externals import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score # Define the error correction function def correctError(code) { # Preprocess the code using TF-IDF vectorization vectorized_code = TfidfVectorizer().fit_transform(code).tokens_set() # Use Naive Bayes to classify the errors in the code nbb = MultinomialNB().fit(vectorized_code) predictions = nbb.predict(vectorized_code) # Return the corrected code return corrections[predictions] }
Standard input is empty
# Define the testing area dimensions width (x) == 1000 height (y) == 600 # Create a grid system for the testing area grid_size = (width / 10), (height / 10) # Draw the grid on the canvas for x in range(width): for y in range(height): ctx.fillStyle = 'gray' ctx.fillRect(x * grid_size[0], y * grid_size[1], grid_size[0], grid_size[1]) // Define the icon sizes and positions icon_size = 50; icon_position = [30, 30]; // Draw the icons on the canvas for key in Object.keys(programmingConcepts): ctx.fillStyle = 'blue'; ctx.font = '24px Arial'; ctx.textBaseline = 'middle'; ctx.textAlign = 'center'; ctx.fillText(programmingConcepts[key], icon_position[0] + icon_size / 2, icon_position[1] + icon_size / 2); // Define the voice command functions function speakText(text) { speechSynthesis.speak(text); } // Add a voice command button to the UI ctx.fillStyle = 'red'; ctx.font = '30px Arial'; ctx.textAlign = 'center'; ctx.textBaseline = 'middle'; ctx.fillText('Speak Text', 100, 100); // Add a listener to the button document.getElementById('speak-button').addEventListener('click', function() { speakText('Hello, world!'); }); // Define the animation function function animate(context) { context.fillStyle = 'red'; context.fillRect(0, 0, width, height); context.globalAlpha = 0.5; context.fillStyle = 'green'; context.fillRect(50, 50, 100, 100); context.globalAlpha = 1; } // Add the animation to the UI ctx.addEventListener('compilation-complete', function() { animate(ctx); }); // Define the layer functions function layer1() { ctx.fillStyle = 'red'; ctx.fillRect(0, 0, width, height); } function layer2() { ctx.fillStyle = 'blue'; ctx.fillRect(50, 50, 100, 100); } // Add the layers to the UI ctx.addEventListener('compilation-complete', function() { layer1(); layer2(); }); # Import the necessary libraries from sklearn.externals import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score # Define the error correction function def correctError(code) { # Preprocess the code using TF-IDF vectorization vectorized_code = TfidfVectorizer().fit_transform(code).tokens_set() # Use Naive Bayes to classify the errors in the code nbb = MultinomialNB().fit(vectorized_code) predictions = nbb.predict(vectorized_code) # Return the corrected code return corrections[predictions] }