NDVpbXBvcnQgb3MKaW1wb3J0IHN5cwpmcm9tIGRvdGVudiBpbXBvcnQgbG9hZF9kb3RlbnYKCm5vd19kaXIgPSBvcy5nZXRjd2QoKQpzeXMucGF0aC5hcHBlbmQobm93X2RpcikKbG9hZF9kb3RlbnYoKQpmcm9tIGluZmVyLm1vZHVsZXMudmMubW9kdWxlcyBpbXBvcnQgVkMKZnJvbSBpbmZlci5tb2R1bGVzLnV2cjUubW9kdWxlcyBpbXBvcnQgdXZyCmZyb20gaW5mZXIubGliLnRyYWluLnByb2Nlc3NfY2twdCBpbXBvcnQgKAogICAgY2hhbmdlX2luZm8sCiAgICBleHRyYWN0X3NtYWxsX21vZGVsLAogICAgbWVyZ2UsCiAgICBzaG93X2luZm8sCikKZnJvbSBpMThuLmkxOG4gaW1wb3J0IEkxOG5BdXRvCmZyb20gY29uZmlncy5jb25maWcgaW1wb3J0IENvbmZpZwpmcm9tIHNrbGVhcm4uY2x1c3RlciBpbXBvcnQgTWluaUJhdGNoS01lYW5zCmltcG9ydCB0b3JjaCwgcGxhdGZvcm0KaW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBncmFkaW8gYXMgZ3IKaW1wb3J0IGZhaXNzCmltcG9ydCBmYWlyc2VxCmltcG9ydCBwYXRobGliCmltcG9ydCBqc29uCmZyb20gdGltZSBpbXBvcnQgc2xlZXAKZnJvbSBzdWJwcm9jZXNzIGltcG9ydCBQb3Blbgpmcm9tIHJhbmRvbSBpbXBvcnQgc2h1ZmZsZQppbXBvcnQgd2FybmluZ3MKaW1wb3J0IHRyYWNlYmFjawppbXBvcnQgdGhyZWFkaW5nCmltcG9ydCBzaHV0aWwKaW1wb3J0IGxvZ2dpbmcKCgpsb2dnaW5nLmdldExvZ2dlcigmcXVvdDtudW1iYSZxdW90Oykuc2V0TGV2ZWwobG9nZ2luZy5XQVJOSU5HKQpsb2dnaW5nLmdldExvZ2dlcigmcXVvdDtodHRweCZxdW90Oykuc2V0TGV2ZWwobG9nZ2luZy5XQVJOSU5HKQoKbG9nZ2VyID0gbG9nZ2luZy5nZXRMb2dnZXIoX19uYW1lX18pCgp0bXAgPSBvcy5wYXRoLmpvaW4obm93X2RpciwgJnF1b3Q7VEVNUCZxdW90OykKc2h1dGlsLnJtdHJlZSh0bXAsIGlnbm9yZV9lcnJvcnM9VHJ1ZSkKc2h1dGlsLnJtdHJlZSgmcXVvdDslcy9ydW50aW1lL0xpYi9zaXRlLXBhY2thZ2VzL2luZmVyX3BhY2smcXVvdDsgJSAobm93X2RpciksIGlnbm9yZV9lcnJvcnM9VHJ1ZSkKc2h1dGlsLnJtdHJlZSgmcXVvdDslcy9ydW50aW1lL0xpYi9zaXRlLXBhY2thZ2VzL3V2cjVfcGFjayZxdW90OyAlIChub3dfZGlyKSwgaWdub3JlX2Vycm9ycz1UcnVlKQpvcy5tYWtlZGlycyh0bXAsIGV4aXN0X29rPVRydWUpCm9zLm1ha2VkaXJzKG9zLnBhdGguam9pbihub3dfZGlyLCAmcXVvdDtsb2dzJnF1b3Q7KSwgZXhpc3Rfb2s9VHJ1ZSkKb3MubWFrZWRpcnMob3MucGF0aC5qb2luKG5vd19kaXIsICZxdW90O2Fzc2V0cy93ZWlnaHRzJnF1b3Q7KSwgZXhpc3Rfb2s9VHJ1ZSkKb3MuZW52aXJvblsmcXVvdDtURU1QJnF1b3Q7XSA9IHRtcAp3YXJuaW5ncy5maWx0ZXJ3YXJuaW5ncygmcXVvdDtpZ25vcmUmcXVvdDspCnRvcmNoLm1hbnVhbF9zZWVkKDExNDUxNCkKCgpjb25maWcgPSBDb25maWcoKQp2YyA9IFZDKGNvbmZpZykKCgppZiBjb25maWcuZG1sID09IFRydWU6CgogICAgZGVmIGZvcndhcmRfZG1sKGN0eCwgeCwgc2NhbGUpOgogICAgICAgIGN0eC5zY2FsZSA9IHNjYWxlCiAgICAgICAgcmVzID0geC5jbG9uZSgpLmRldGFjaCgpCiAgICAgICAgcmV0dXJuIHJlcwoKICAgIGZhaXJzZXEubW9kdWxlcy5ncmFkX211bHRpcGx5LkdyYWRNdWx0aXBseS5mb3J3YXJkID0gZm9yd2FyZF9kbWwKaTE4biA9IEkxOG5BdXRvKCkKbG9nZ2VyLmluZm8oaTE4bikKIyDliKTmlq3mmK/lkKbmnInog73nlKjmnaXorq3nu4PlkozliqDpgJ/mjqjnkIbnmoRO5Y2hCm5ncHUgPSB0b3JjaC5jdWRhLmRldmljZV9jb3VudCgpCmdwdV9pbmZvcyA9IFtdCm1lbSA9IFtdCmlmX2dwdV9vayA9IEZhbHNlCgppZiB0b3JjaC5jdWRhLmlzX2F2YWlsYWJsZSgpIG9yIG5ncHUgIT0gMDoKICAgIGZvciBpIGluIHJhbmdlKG5ncHUpOgogICAgICAgIGdwdV9uYW1lID0gdG9yY2guY3VkYS5nZXRfZGV2aWNlX25hbWUoaSkKICAgICAgICBpZiBhbnkoCiAgICAgICAgICAgIHZhbHVlIGluIGdwdV9uYW1lLnVwcGVyKCkKICAgICAgICAgICAgZm9yIHZhbHVlIGluIFsKICAgICAgICAgICAgICAgICZxdW90OzEwJnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7MTYmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDsyMCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90OzMwJnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7NDAmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDtBMiZxdW90OywKICAgICAgICAgICAgICAgICZxdW90O0EzJnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7QTQmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDtQNCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90O0E1MCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90OzUwMCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90O0E2MCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90OzcwJnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7ODAmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDs5MCZxdW90OywKICAgICAgICAgICAgICAgICZxdW90O000JnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7VDQmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDtUSVRBTiZxdW90OywKICAgICAgICAgICAgICAgICZxdW90OzQwNjAmcXVvdDssCiAgICAgICAgICAgICAgICAmcXVvdDtMJnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7NjAwMCZxdW90OywKICAgICAgICAgICAgXQogICAgICAgICk6CiAgICAgICAgICAgICMgQTEwI0ExMDAjVjEwMCNBNDAjUDQwI000MCNLODAjQTQ1MDAKICAgICAgICAgICAgaWZfZ3B1X29rID0gVHJ1ZSAgIyDoh7PlsJHmnInkuIDlvKDog73nlKjnmoRO5Y2hCiAgICAgICAgICAgIGdwdV9pbmZvcy5hcHBlbmQoJnF1b3Q7JXNcdCVzJnF1b3Q7ICUgKGksIGdwdV9uYW1lKSkKICAgICAgICAgICAgbWVtLmFwcGVuZCgKICAgICAgICAgICAgICAgIGludCgKICAgICAgICAgICAgICAgICAgICB0b3JjaC5jdWRhLmdldF9kZXZpY2VfcHJvcGVydGllcyhpKS50b3RhbF9tZW1vcnkKICAgICAgICAgICAgICAgICAgICAvIDEwMjQKICAgICAgICAgICAgICAgICAgICAvIDEwMjQKICAgICAgICAgICAgICAgICAgICAvIDEwMjQKICAgICAgICAgICAgICAgICAgICArIDAuNAogICAgICAgICAgICAgICAgKQogICAgICAgICAgICApCmlmIGlmX2dwdV9vayBhbmQgbGVuKGdwdV9pbmZvcykgJmd0OyAwOgogICAgZ3B1X2luZm8gPSAmcXVvdDtcbiZxdW90Oy5qb2luKGdwdV9pbmZvcykKICAgIGRlZmF1bHRfYmF0Y2hfc2l6ZSA9IG1pbihtZW0pIC8vIDIKZWxzZToKICAgIGdwdV9pbmZvID0gaTE4bigmcXVvdDvlvojpgZfmhr7mgqjov5nmsqHmnInog73nlKjnmoTmmL7ljaHmnaXmlK/mjIHmgqjorq3nu4MmcXVvdDspCiAgICBkZWZhdWx0X2JhdGNoX3NpemUgPSAxCmdwdXMgPSAmcXVvdDstJnF1b3Q7LmpvaW4oW2lbMF0gZm9yIGkgaW4gZ3B1X2luZm9zXSkKCgpjbGFzcyBUb29sQnV0dG9uKGdyLkJ1dHRvbiwgZ3IuY29tcG9uZW50cy5Gb3JtQ29tcG9uZW50KToKICAgICZxdW90OyZxdW90OyZxdW90O1NtYWxsIGJ1dHRvbiB3aXRoIHNpbmdsZSBlbW9qaSBhcyB0ZXh0LCBmaXRzIGluc2lkZSBncmFkaW8gZm9ybXMmcXVvdDsmcXVvdDsmcXVvdDsKCiAgICBkZWYgX19pbml0X18oc2VsZiwgKiprd2FyZ3MpOgogICAgICAgIHN1cGVyKCkuX19pbml0X18odmFyaWFudD0mcXVvdDt0b29sJnF1b3Q7LCAqKmt3YXJncykKCiAgICBkZWYgZ2V0X2Jsb2NrX25hbWUoc2VsZik6CiAgICAgICAgcmV0dXJuICZxdW90O2J1dHRvbiZxdW90OwoKCndlaWdodF9yb290ID0gb3MuZ2V0ZW52KCZxdW90O3dlaWdodF9yb290JnF1b3Q7KQp3ZWlnaHRfdXZyNV9yb290ID0gb3MuZ2V0ZW52KCZxdW90O3dlaWdodF91dnI1X3Jvb3QmcXVvdDspCmluZGV4X3Jvb3QgPSBvcy5nZXRlbnYoJnF1b3Q7aW5kZXhfcm9vdCZxdW90OykKb3V0c2lkZV9pbmRleF9yb290ID0gb3MuZ2V0ZW52KCZxdW90O291dHNpZGVfaW5kZXhfcm9vdCZxdW90OykKCm5hbWVzID0gW10KZm9yIG5hbWUgaW4gb3MubGlzdGRpcih3ZWlnaHRfcm9vdCk6CiAgICBpZiBuYW1lLmVuZHN3aXRoKCZxdW90Oy5wdGgmcXVvdDspOgogICAgICAgIG5hbWVzLmFwcGVuZChuYW1lKQppbmRleF9wYXRocyA9IFtdCgoKZGVmIGxvb2t1cF9pbmRpY2VzKGluZGV4X3Jvb3QpOgogICAgZ2xvYmFsIGluZGV4X3BhdGhzCiAgICBmb3Igcm9vdCwgZGlycywgZmlsZXMgaW4gb3Mud2FsayhpbmRleF9yb290LCB0b3Bkb3duPUZhbHNlKToKICAgICAgICBmb3IgbmFtZSBpbiBmaWxlczoKICAgICAgICAgICAgaWYgbmFtZS5lbmRzd2l0aCgmcXVvdDsuaW5kZXgmcXVvdDspIGFuZCAmcXVvdDt0cmFpbmVkJnF1b3Q7IG5vdCBpbiBuYW1lOgogICAgICAgICAgICAgICAgaW5kZXhfcGF0aHMuYXBwZW5kKCZxdW90OyVzLyVzJnF1b3Q7ICUgKHJvb3QsIG5hbWUpKQoKCmxvb2t1cF9pbmRpY2VzKGluZGV4X3Jvb3QpCmxvb2t1cF9pbmRpY2VzKG91dHNpZGVfaW5kZXhfcm9vdCkKdXZyNV9uYW1lcyA9IFtdCmZvciBuYW1lIGluIG9zLmxpc3RkaXIod2VpZ2h0X3V2cjVfcm9vdCk6CiAgICBpZiBuYW1lLmVuZHN3aXRoKCZxdW90Oy5wdGgmcXVvdDspIG9yICZxdW90O29ubngmcXVvdDsgaW4gbmFtZToKICAgICAgICB1dnI1X25hbWVzLmFwcGVuZChuYW1lLnJlcGxhY2UoJnF1b3Q7LnB0aCZxdW90OywgJnF1b3Q7JnF1b3Q7KSkKCgpkZWYgY2hhbmdlX2Nob2ljZXMoKToKICAgIG5hbWVzID0gW10KICAgIGZvciBuYW1lIGluIG9zLmxpc3RkaXIod2VpZ2h0X3Jvb3QpOgogICAgICAgIGlmIG5hbWUuZW5kc3dpdGgoJnF1b3Q7LnB0aCZxdW90Oyk6CiAgICAgICAgICAgIG5hbWVzLmFwcGVuZChuYW1lKQogICAgaW5kZXhfcGF0aHMgPSBbXQogICAgZm9yIHJvb3QsIGRpcnMsIGZpbGVzIGluIG9zLndhbGsoaW5kZXhfcm9vdCwgdG9wZG93bj1GYWxzZSk6CiAgICAgICAgZm9yIG5hbWUgaW4gZmlsZXM6CiAgICAgICAgICAgIGlmIG5hbWUuZW5kc3dpdGgoJnF1b3Q7LmluZGV4JnF1b3Q7KSBhbmQgJnF1b3Q7dHJhaW5lZCZxdW90OyBub3QgaW4gbmFtZToKICAgICAgICAgICAgICAgIGluZGV4X3BhdGhzLmFwcGVuZCgmcXVvdDslcy8lcyZxdW90OyAlIChyb290LCBuYW1lKSkKICAgIHJldHVybiB7JnF1b3Q7Y2hvaWNlcyZxdW90Ozogc29ydGVkKG5hbWVzKSwgJnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90O30sIHsKICAgICAgICAmcXVvdDtjaG9pY2VzJnF1b3Q7OiBzb3J0ZWQoaW5kZXhfcGF0aHMpLAogICAgICAgICZxdW90O19fdHlwZV9fJnF1b3Q7OiAmcXVvdDt1cGRhdGUmcXVvdDssCiAgICB9CgoKZGVmIGNsZWFuKCk6CiAgICByZXR1cm4geyZxdW90O3ZhbHVlJnF1b3Q7OiAmcXVvdDsmcXVvdDssICZxdW90O19fdHlwZV9fJnF1b3Q7OiAmcXVvdDt1cGRhdGUmcXVvdDt9CgoKZGVmIGV4cG9ydF9vbm54KE1vZGVsUGF0aCwgRXhwb3J0ZWRQYXRoKToKICAgIGZyb20gaW5mZXIubW9kdWxlcy5vbm54LmV4cG9ydCBpbXBvcnQgZXhwb3J0X29ubnggYXMgZW8KCiAgICBlbyhNb2RlbFBhdGgsIEV4cG9ydGVkUGF0aCkKCgpzcl9kaWN0ID0gewogICAgJnF1b3Q7MzJrJnF1b3Q7OiAzMjAwMCwKICAgICZxdW90OzQwayZxdW90OzogNDAwMDAsCiAgICAmcXVvdDs0OGsmcXVvdDs6IDQ4MDAwLAp9CgoKZGVmIGlmX2RvbmUoZG9uZSwgcCk6CiAgICB3aGlsZSAxOgogICAgICAgIGlmIHAucG9sbCgpIGlzIE5vbmU6CiAgICAgICAgICAgIHNsZWVwKDAuNSkKICAgICAgICBlbHNlOgogICAgICAgICAgICBicmVhawogICAgZG9uZVswXSA9IFRydWUKCgpkZWYgaWZfZG9uZV9tdWx0aShkb25lLCBwcyk6CiAgICB3aGlsZSAxOgogICAgICAgICMgcG9sbD09Tm9uZeS7o+ihqOi/m+eoi+acque7k+adnwogICAgICAgICMg5Y+q6KaB5pyJ5LiA5Liq6L+b56iL5pyq57uT5p2f6YO95LiN5YGcCiAgICAgICAgZmxhZyA9IDEKICAgICAgICBmb3IgcCBpbiBwczoKICAgICAgICAgICAgaWYgcC5wb2xsKCkgaXMgTm9uZToKICAgICAgICAgICAgICAgIGZsYWcgPSAwCiAgICAgICAgICAgICAgICBzbGVlcCgwLjUpCiAgICAgICAgICAgICAgICBicmVhawogICAgICAgIGlmIGZsYWcgPT0gMToKICAgICAgICAgICAgYnJlYWsKICAgIGRvbmVbMF0gPSBUcnVlCgoKZGVmIHByZXByb2Nlc3NfZGF0YXNldCh0cmFpbnNldF9kaXIsIGV4cF9kaXIsIHNyLCBuX3ApOgogICAgc3IgPSBzcl9kaWN0W3NyXQogICAgb3MubWFrZWRpcnMoJnF1b3Q7JXMvbG9ncy8lcyZxdW90OyAlIChub3dfZGlyLCBleHBfZGlyKSwgZXhpc3Rfb2s9VHJ1ZSkKICAgIGYgPSBvcGVuKCZxdW90OyVzL2xvZ3MvJXMvcHJlcHJvY2Vzcy5sb2cmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksICZxdW90O3cmcXVvdDspCiAgICBmLmNsb3NlKCkKICAgIGNtZCA9ICcmcXVvdDslcyZxdW90OyBpbmZlci9tb2R1bGVzL3RyYWluL3ByZXByb2Nlc3MucHkgJnF1b3Q7JXMmcXVvdDsgJXMgJXMgJnF1b3Q7JXMvbG9ncy8lcyZxdW90OyAlcyAlLjFmJyAlICgKICAgICAgICBjb25maWcucHl0aG9uX2NtZCwKICAgICAgICB0cmFpbnNldF9kaXIsCiAgICAgICAgc3IsCiAgICAgICAgbl9wLAogICAgICAgIG5vd19kaXIsCiAgICAgICAgZXhwX2RpciwKICAgICAgICBjb25maWcubm9wYXJhbGxlbCwKICAgICAgICBjb25maWcucHJlcHJvY2Vzc19wZXIsCiAgICApCiAgICBsb2dnZXIuaW5mbygmcXVvdDtFeGVjdXRlOiAmcXVvdDsgKyBjbWQpCiAgICAjICwgc3RkaW49UElQRSwgc3Rkb3V0PVBJUEUsc3RkZXJyPVBJUEUsY3dkPW5vd19kaXIKICAgIHAgPSBQb3BlbihjbWQsIHNoZWxsPVRydWUpCiAgICAjIOeFnueslGdyLCBwb3BlbiByZWFk6YO96Z2e5b6X5YWo6LeR5a6M5LqG5YaN5LiA5qyh5oCn6K+75Y+WLCDkuI3nlKhncuWwseato+W4uOivu+S4gOWPpei+k+WHuuS4gOWPpTvlj6rog73pop3lpJblvITlh7rkuIDkuKrmlofmnKzmtYHlrprml7bor7sKICAgIGRvbmUgPSBbRmFsc2VdCiAgICB0aHJlYWRpbmcuVGhyZWFkKAogICAgICAgIHRhcmdldD1pZl9kb25lLAogICAgICAgIGFyZ3M9KAogICAgICAgICAgICBkb25lLAogICAgICAgICAgICBwLAogICAgICAgICksCiAgICApLnN0YXJ0KCkKICAgIHdoaWxlIDE6CiAgICAgICAgd2l0aCBvcGVuKCZxdW90OyVzL2xvZ3MvJXMvcHJlcHJvY2Vzcy5sb2cmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksICZxdW90O3ImcXVvdDspIGFzIGY6CiAgICAgICAgICAgIHlpZWxkIChmLnJlYWQoKSkKICAgICAgICBzbGVlcCgxKQogICAgICAgIGlmIGRvbmVbMF06CiAgICAgICAgICAgIGJyZWFrCiAgICB3aXRoIG9wZW4oJnF1b3Q7JXMvbG9ncy8lcy9wcmVwcm9jZXNzLmxvZyZxdW90OyAlIChub3dfZGlyLCBleHBfZGlyKSwgJnF1b3Q7ciZxdW90OykgYXMgZjoKICAgICAgICBsb2cgPSBmLnJlYWQoKQogICAgbG9nZ2VyLmluZm8obG9nKQogICAgeWllbGQgbG9nCgoKIyBidXQyLmNsaWNrKGV4dHJhY3RfZjAsW2dwdXM2LG5wNyxmMG1ldGhvZDgsaWZfZjBfMyx0cmFpbnNldF9kaXI0XSxbaW5mbzJdKQpkZWYgZXh0cmFjdF9mMF9mZWF0dXJlKGdwdXMsIG5fcCwgZjBtZXRob2QsIGlmX2YwLCBleHBfZGlyLCB2ZXJzaW9uMTksIGdwdXNfcm12cGUpOgogICAgZ3B1cyA9IGdwdXMuc3BsaXQoJnF1b3Q7LSZxdW90OykKICAgIG9zLm1ha2VkaXJzKCZxdW90OyVzL2xvZ3MvJXMmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksIGV4aXN0X29rPVRydWUpCiAgICBmID0gb3BlbigmcXVvdDslcy9sb2dzLyVzL2V4dHJhY3RfZjBfZmVhdHVyZS5sb2cmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksICZxdW90O3cmcXVvdDspCiAgICBmLmNsb3NlKCkKICAgIGlmIGlmX2YwOgogICAgICAgIGlmIGYwbWV0aG9kICE9ICZxdW90O3JtdnBlX2dwdSZxdW90OzoKICAgICAgICAgICAgY21kID0gKAogICAgICAgICAgICAgICAgJyZxdW90OyVzJnF1b3Q7IGluZmVyL21vZHVsZXMvdHJhaW4vZXh0cmFjdC9leHRyYWN0X2YwX3ByaW50LnB5ICZxdW90OyVzL2xvZ3MvJXMmcXVvdDsgJXMgJXMnCiAgICAgICAgICAgICAgICAlICgKICAgICAgICAgICAgICAgICAgICBjb25maWcucHl0aG9uX2NtZCwKICAgICAgICAgICAgICAgICAgICBub3dfZGlyLAogICAgICAgICAgICAgICAgICAgIGV4cF9kaXIsCiAgICAgICAgICAgICAgICAgICAgbl9wLAogICAgICAgICAgICAgICAgICAgIGYwbWV0aG9kLAogICAgICAgICAgICAgICAgKQogICAgICAgICAgICApCiAgICAgICAgICAgIGxvZ2dlci5pbmZvKCZxdW90O0V4ZWN1dGU6ICZxdW90OyArIGNtZCkKICAgICAgICAgICAgcCA9IFBvcGVuKAogICAgICAgICAgICAgICAgY21kLCBzaGVsbD1UcnVlLCBjd2Q9bm93X2RpcgogICAgICAgICAgICApICAjICwgc3RkaW49UElQRSwgc3Rkb3V0PVBJUEUsc3RkZXJyPVBJUEUKICAgICAgICAgICAgIyDnhZ7nrJRnciwgcG9wZW4gcmVhZOmDvemdnuW+l+WFqOi3keWujOS6huWGjeS4gOasoeaAp+ivu+WPliwg5LiN55SoZ3LlsLHmraPluLjor7vkuIDlj6XovpPlh7rkuIDlj6U75Y+q6IO96aKd5aSW5byE5Ye65LiA5Liq5paH5pys5rWB5a6a5pe26K+7CiAgICAgICAgICAgIGRvbmUgPSBbRmFsc2VdCiAgICAgICAgICAgIHRocmVhZGluZy5UaHJlYWQoCiAgICAgICAgICAgICAgICB0YXJnZXQ9aWZfZG9uZSwKICAgICAgICAgICAgICAgIGFyZ3M9KAogICAgICAgICAgICAgICAgICAgIGRvbmUsCiAgICAgICAgICAgICAgICAgICAgcCwKICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICkuc3RhcnQoKQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGlmIGdwdXNfcm12cGUgIT0gJnF1b3Q7LSZxdW90OzoKICAgICAgICAgICAgICAgIGdwdXNfcm12cGUgPSBncHVzX3JtdnBlLnNwbGl0KCZxdW90Oy0mcXVvdDspCiAgICAgICAgICAgICAgICBsZW5nID0gbGVuKGdwdXNfcm12cGUpCiAgICAgICAgICAgICAgICBwcyA9IFtdCiAgICAgICAgICAgICAgICBmb3IgaWR4LCBuX2cgaW4gZW51bWVyYXRlKGdwdXNfcm12cGUpOgogICAgICAgICAgICAgICAgICAgIGNtZCA9ICgKICAgICAgICAgICAgICAgICAgICAgICAgJyZxdW90OyVzJnF1b3Q7IGluZmVyL21vZHVsZXMvdHJhaW4vZXh0cmFjdC9leHRyYWN0X2YwX3JtdnBlLnB5ICVzICVzICVzICZxdW90OyVzL2xvZ3MvJXMmcXVvdDsgJXMgJwogICAgICAgICAgICAgICAgICAgICAgICAlICgKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbmZpZy5weXRob25fY21kLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGVuZywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkeCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5fZywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vd19kaXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBleHBfZGlyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgY29uZmlnLmlzX2hhbGYsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgbG9nZ2VyLmluZm8oJnF1b3Q7RXhlY3V0ZTogJnF1b3Q7ICsgY21kKQogICAgICAgICAgICAgICAgICAgIHAgPSBQb3BlbigKICAgICAgICAgICAgICAgICAgICAgICAgY21kLCBzaGVsbD1UcnVlLCBjd2Q9bm93X2RpcgogICAgICAgICAgICAgICAgICAgICkgICMgLCBzaGVsbD1UcnVlLCBzdGRpbj1QSVBFLCBzdGRvdXQ9UElQRSwgc3RkZXJyPVBJUEUsIGN3ZD1ub3dfZGlyCiAgICAgICAgICAgICAgICAgICAgcHMuYXBwZW5kKHApCiAgICAgICAgICAgICAgICAjIOeFnueslGdyLCBwb3BlbiByZWFk6YO96Z2e5b6X5YWo6LeR5a6M5LqG5YaN5LiA5qyh5oCn6K+75Y+WLCDkuI3nlKhncuWwseato+W4uOivu+S4gOWPpei+k+WHuuS4gOWPpTvlj6rog73pop3lpJblvITlh7rkuIDkuKrmlofmnKzmtYHlrprml7bor7sKICAgICAgICAgICAgICAgIGRvbmUgPSBbRmFsc2VdCiAgICAgICAgICAgICAgICB0aHJlYWRpbmcuVGhyZWFkKAogICAgICAgICAgICAgICAgICAgIHRhcmdldD1pZl9kb25lX211bHRpLCAgIwogICAgICAgICAgICAgICAgICAgIGFyZ3M9KAogICAgICAgICAgICAgICAgICAgICAgICBkb25lLAogICAgICAgICAgICAgICAgICAgICAgICBwcywKICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgKS5zdGFydCgpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBjbWQgPSAoCiAgICAgICAgICAgICAgICAgICAgY29uZmlnLnB5dGhvbl9jbWQKICAgICAgICAgICAgICAgICAgICArICcgaW5mZXIvbW9kdWxlcy90cmFpbi9leHRyYWN0L2V4dHJhY3RfZjBfcm12cGVfZG1sLnB5ICZxdW90OyVzL2xvZ3MvJXMmcXVvdDsgJwogICAgICAgICAgICAgICAgICAgICUgKAogICAgICAgICAgICAgICAgICAgICAgICBub3dfZGlyLAogICAgICAgICAgICAgICAgICAgICAgICBleHBfZGlyLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGxvZ2dlci5pbmZvKCZxdW90O0V4ZWN1dGU6ICZxdW90OyArIGNtZCkKICAgICAgICAgICAgICAgIHAgPSBQb3BlbigKICAgICAgICAgICAgICAgICAgICBjbWQsIHNoZWxsPVRydWUsIGN3ZD1ub3dfZGlyCiAgICAgICAgICAgICAgICApICAjICwgc2hlbGw9VHJ1ZSwgc3RkaW49UElQRSwgc3Rkb3V0PVBJUEUsIHN0ZGVycj1QSVBFLCBjd2Q9bm93X2RpcgogICAgICAgICAgICAgICAgcC53YWl0KCkKICAgICAgICAgICAgICAgIGRvbmUgPSBbVHJ1ZV0KICAgICAgICB3aGlsZSAxOgogICAgICAgICAgICB3aXRoIG9wZW4oCiAgICAgICAgICAgICAgICAmcXVvdDslcy9sb2dzLyVzL2V4dHJhY3RfZjBfZmVhdHVyZS5sb2cmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksICZxdW90O3ImcXVvdDsKICAgICAgICAgICAgKSBhcyBmOgogICAgICAgICAgICAgICAgeWllbGQgKGYucmVhZCgpKQogICAgICAgICAgICBzbGVlcCgxKQogICAgICAgICAgICBpZiBkb25lWzBdOgogICAgICAgICAgICAgICAgYnJlYWsKICAgICAgICB3aXRoIG9wZW4oJnF1b3Q7JXMvbG9ncy8lcy9leHRyYWN0X2YwX2ZlYXR1cmUubG9nJnF1b3Q7ICUgKG5vd19kaXIsIGV4cF9kaXIpLCAmcXVvdDtyJnF1b3Q7KSBhcyBmOgogICAgICAgICAgICBsb2cgPSBmLnJlYWQoKQogICAgICAgIGxvZ2dlci5pbmZvKGxvZykKICAgICAgICB5aWVsZCBsb2cKICAgICMg5a+55LiN5ZCMcGFydOWIhuWIq+W8gOWkmui/m+eoiwogICAgJnF1b3Q7JnF1b3Q7JnF1b3Q7CiAgICBuX3BhcnQ9aW50KHN5cy5hcmd2WzFdKQogICAgaV9wYXJ0PWludChzeXMuYXJndlsyXSkKICAgIGlfZ3B1PXN5cy5hcmd2WzNdCiAgICBleHBfZGlyPXN5cy5hcmd2WzRdCiAgICBvcy5lbnZpcm9uWyZxdW90O0NVREFfVklTSUJMRV9ERVZJQ0VTJnF1b3Q7XT1zdHIoaV9ncHUpCiAgICAmcXVvdDsmcXVvdDsmcXVvdDsKICAgIGxlbmcgPSBsZW4oZ3B1cykKICAgIHBzID0gW10KICAgIGZvciBpZHgsIG5fZyBpbiBlbnVtZXJhdGUoZ3B1cyk6CiAgICAgICAgY21kID0gKAogICAgICAgICAgICAnJnF1b3Q7JXMmcXVvdDsgaW5mZXIvbW9kdWxlcy90cmFpbi9leHRyYWN0X2ZlYXR1cmVfcHJpbnQucHkgJXMgJXMgJXMgJXMgJnF1b3Q7JXMvbG9ncy8lcyZxdW90OyAlcyAlcycKICAgICAgICAgICAgJSAoCiAgICAgICAgICAgICAgICBjb25maWcucHl0aG9uX2NtZCwKICAgICAgICAgICAgICAgIGNvbmZpZy5kZXZpY2UsCiAgICAgICAgICAgICAgICBsZW5nLAogICAgICAgICAgICAgICAgaWR4LAogICAgICAgICAgICAgICAgbl9nLAogICAgICAgICAgICAgICAgbm93X2RpciwKICAgICAgICAgICAgICAgIGV4cF9kaXIsCiAgICAgICAgICAgICAgICB2ZXJzaW9uMTksCiAgICAgICAgICAgICAgICBjb25maWcuaXNfaGFsZiwKICAgICAgICAgICAgKQogICAgICAgICkKICAgICAgICBsb2dnZXIuaW5mbygmcXVvdDtFeGVjdXRlOiAmcXVvdDsgKyBjbWQpCiAgICAgICAgcCA9IFBvcGVuKAogICAgICAgICAgICBjbWQsIHNoZWxsPVRydWUsIGN3ZD1ub3dfZGlyCiAgICAgICAgKSAgIyAsIHNoZWxsPVRydWUsIHN0ZGluPVBJUEUsIHN0ZG91dD1QSVBFLCBzdGRlcnI9UElQRSwgY3dkPW5vd19kaXIKICAgICAgICBwcy5hcHBlbmQocCkKICAgICMg54We56yUZ3IsIHBvcGVuIHJlYWTpg73pnZ7lvpflhajot5Hlrozkuoblho3kuIDmrKHmgKfor7vlj5YsIOS4jeeUqGdy5bCx5q2j5bi46K+75LiA5Y+l6L6T5Ye65LiA5Y+lO+WPquiDvemineWkluW8hOWHuuS4gOS4quaWh+acrOa1geWumuaXtuivuwogICAgZG9uZSA9IFtGYWxzZV0KICAgIHRocmVhZGluZy5UaHJlYWQoCiAgICAgICAgdGFyZ2V0PWlmX2RvbmVfbXVsdGksCiAgICAgICAgYXJncz0oCiAgICAgICAgICAgIGRvbmUsCiAgICAgICAgICAgIHBzLAogICAgICAgICksCiAgICApLnN0YXJ0KCkKICAgIHdoaWxlIDE6CiAgICAgICAgd2l0aCBvcGVuKCZxdW90OyVzL2xvZ3MvJXMvZXh0cmFjdF9mMF9mZWF0dXJlLmxvZyZxdW90OyAlIChub3dfZGlyLCBleHBfZGlyKSwgJnF1b3Q7ciZxdW90OykgYXMgZjoKICAgICAgICAgICAgeWllbGQgKGYucmVhZCgpKQogICAgICAgIHNsZWVwKDEpCiAgICAgICAgaWYgZG9uZVswXToKICAgICAgICAgICAgYnJlYWsKICAgIHdpdGggb3BlbigmcXVvdDslcy9sb2dzLyVzL2V4dHJhY3RfZjBfZmVhdHVyZS5sb2cmcXVvdDsgJSAobm93X2RpciwgZXhwX2RpciksICZxdW90O3ImcXVvdDspIGFzIGY6CiAgICAgICAgbG9nID0gZi5yZWFkKCkKICAgIGxvZ2dlci5pbmZvKGxvZykKICAgIHlpZWxkIGxvZwoKCmRlZiBnZXRfcHJldHJhaW5lZF9tb2RlbHMocGF0aF9zdHIsIGYwX3N0ciwgc3IyKToKICAgIGlmX3ByZXRyYWluZWRfZ2VuZXJhdG9yX2V4aXN0ID0gb3MuYWNjZXNzKAogICAgICAgICZxdW90O2Fzc2V0cy9wcmV0cmFpbmVkJXMvJXNHJXMucHRoJnF1b3Q7ICUgKHBhdGhfc3RyLCBmMF9zdHIsIHNyMiksIG9zLkZfT0sKICAgICkKICAgIGlmX3ByZXRyYWluZWRfZGlzY3JpbWluYXRvcl9leGlzdCA9IG9zLmFjY2VzcygKICAgICAgICAmcXVvdDthc3NldHMvcHJldHJhaW5lZCVzLyVzRCVzLnB0aCZxdW90OyAlIChwYXRoX3N0ciwgZjBfc3RyLCBzcjIpLCBvcy5GX09LCiAgICApCiAgICBpZiBub3QgaWZfcHJldHJhaW5lZF9nZW5lcmF0b3JfZXhpc3Q6CiAgICAgICAgbG9nZ2VyLndhcm5pbmcoCiAgICAgICAgICAgICZxdW90O2Fzc2V0cy9wcmV0cmFpbmVkJXMvJXNHJXMucHRoIG5vdCBleGlzdCwgd2lsbCBub3QgdXNlIHByZXRyYWluZWQgbW9kZWwmcXVvdDssCiAgICAgICAgICAgIHBhdGhfc3RyLAogICAgICAgICAgICBmMF9zdHIsCiAgICAgICAgICAgIHNyMiwKICAgICAgICApCiAgICBpZiBub3QgaWZfcHJldHJhaW5lZF9kaXNjcmltaW5hdG9yX2V4aXN0OgogICAgICAgIGxvZ2dlci53YXJuaW5nKAogICAgICAgICAgICAmcXVvdDthc3NldHMvcHJldHJhaW5lZCVzLyVzRCVzLnB0aCBub3QgZXhpc3QsIHdpbGwgbm90IHVzZSBwcmV0cmFpbmVkIG1vZGVsJnF1b3Q7LAogICAgICAgICAgICBwYXRoX3N0ciwKICAgICAgICAgICAgZjBfc3RyLAogICAgICAgICAgICBzcjIsCiAgICAgICAgKQogICAgcmV0dXJuICgKICAgICAgICAoCiAgICAgICAgICAgICZxdW90O2Fzc2V0cy9wcmV0cmFpbmVkJXMvJXNHJXMucHRoJnF1b3Q7ICUgKHBhdGhfc3RyLCBmMF9zdHIsIHNyMikKICAgICAgICAgICAgaWYgaWZfcHJldHJhaW5lZF9nZW5lcmF0b3JfZXhpc3QKICAgICAgICAgICAgZWxzZSAmcXVvdDsmcXVvdDsKICAgICAgICApLAogICAgICAgICgKICAgICAgICAgICAgJnF1b3Q7YXNzZXRzL3ByZXRyYWluZWQlcy8lc0Qlcy5wdGgmcXVvdDsgJSAocGF0aF9zdHIsIGYwX3N0ciwgc3IyKQogICAgICAgICAgICBpZiBpZl9wcmV0cmFpbmVkX2Rpc2NyaW1pbmF0b3JfZXhpc3QKICAgICAgICAgICAgZWxzZSAmcXVvdDsmcXVvdDsKICAgICAgICApLAogICAgKQoKCmRlZiBjaGFuZ2Vfc3IyKHNyMiwgaWZfZjBfMywgdmVyc2lvbjE5KToKICAgIHBhdGhfc3RyID0gJnF1b3Q7JnF1b3Q7IGlmIHZlcnNpb24xOSA9PSAmcXVvdDt2MSZxdW90OyBlbHNlICZxdW90O192MiZxdW90OwogICAgZjBfc3RyID0gJnF1b3Q7ZjAmcXVvdDsgaWYgaWZfZjBfMyBlbHNlICZxdW90OyZxdW90OwogICAgcmV0dXJuIGdldF9wcmV0cmFpbmVkX21vZGVscyhwYXRoX3N0ciwgZjBfc3RyLCBzcjIpCgoKZGVmIGNoYW5nZV92ZXJzaW9uMTkoc3IyLCBpZl9mMF8zLCB2ZXJzaW9uMTkpOgogICAgcGF0aF9zdHIgPSAmcXVvdDsmcXVvdDsgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7IGVsc2UgJnF1b3Q7X3YyJnF1b3Q7CiAgICBpZiBzcjIgPT0gJnF1b3Q7MzJrJnF1b3Q7IGFuZCB2ZXJzaW9uMTkgPT0gJnF1b3Q7djEmcXVvdDs6CiAgICAgICAgc3IyID0gJnF1b3Q7NDBrJnF1b3Q7CiAgICB0b19yZXR1cm5fc3IyID0gKAogICAgICAgIHsmcXVvdDtjaG9pY2VzJnF1b3Q7OiBbJnF1b3Q7NDBrJnF1b3Q7LCAmcXVvdDs0OGsmcXVvdDtdLCAmcXVvdDtfX3R5cGVfXyZxdW90OzogJnF1b3Q7dXBkYXRlJnF1b3Q7LCAmcXVvdDt2YWx1ZSZxdW90Ozogc3IyfQogICAgICAgIGlmIHZlcnNpb24xOSA9PSAmcXVvdDt2MSZxdW90OwogICAgICAgIGVsc2UgeyZxdW90O2Nob2ljZXMmcXVvdDs6IFsmcXVvdDs0MGsmcXVvdDssICZxdW90OzQ4ayZxdW90OywgJnF1b3Q7MzJrJnF1b3Q7XSwgJnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90OywgJnF1b3Q7dmFsdWUmcXVvdDs6IHNyMn0KICAgICkKICAgIGYwX3N0ciA9ICZxdW90O2YwJnF1b3Q7IGlmIGlmX2YwXzMgZWxzZSAmcXVvdDsmcXVvdDsKICAgIHJldHVybiAoCiAgICAgICAgKmdldF9wcmV0cmFpbmVkX21vZGVscyhwYXRoX3N0ciwgZjBfc3RyLCBzcjIpLAogICAgICAgIHRvX3JldHVybl9zcjIsCiAgICApCgoKZGVmIGNoYW5nZV9mMChpZl9mMF8zLCBzcjIsIHZlcnNpb24xOSk6ICAjIGYwbWV0aG9kOCxwcmV0cmFpbmVkX0cxNCxwcmV0cmFpbmVkX0QxNQogICAgcGF0aF9zdHIgPSAmcXVvdDsmcXVvdDsgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7IGVsc2UgJnF1b3Q7X3YyJnF1b3Q7CiAgICByZXR1cm4gKAogICAgICAgIHsmcXVvdDt2aXNpYmxlJnF1b3Q7OiBpZl9mMF8zLCAmcXVvdDtfX3R5cGVfXyZxdW90OzogJnF1b3Q7dXBkYXRlJnF1b3Q7fSwKICAgICAgICB7JnF1b3Q7dmlzaWJsZSZxdW90OzogaWZfZjBfMywgJnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90O30sCiAgICAgICAgKmdldF9wcmV0cmFpbmVkX21vZGVscyhwYXRoX3N0ciwgJnF1b3Q7ZjAmcXVvdDsgaWYgaWZfZjBfMyA9PSBUcnVlIGVsc2UgJnF1b3Q7JnF1b3Q7LCBzcjIpLAogICAgKQoKCiMgYnV0My5jbGljayhjbGlja190cmFpbixbZXhwX2RpcjEsc3IyLGlmX2YwXzMsc2F2ZV9lcG9jaDEwLHRvdGFsX2Vwb2NoMTEsYmF0Y2hfc2l6ZTEyLGlmX3NhdmVfbGF0ZXN0MTMscHJldHJhaW5lZF9HMTQscHJldHJhaW5lZF9EMTUsZ3B1czE2XSkKZGVmIGNsaWNrX3RyYWluKAogICAgZXhwX2RpcjEsCiAgICBzcjIsCiAgICBpZl9mMF8zLAogICAgc3BrX2lkNSwKICAgIHNhdmVfZXBvY2gxMCwKICAgIHRvdGFsX2Vwb2NoMTEsCiAgICBiYXRjaF9zaXplMTIsCiAgICBpZl9zYXZlX2xhdGVzdDEzLAogICAgcHJldHJhaW5lZF9HMTQsCiAgICBwcmV0cmFpbmVkX0QxNSwKICAgIGdwdXMxNiwKICAgIGlmX2NhY2hlX2dwdTE3LAogICAgaWZfc2F2ZV9ldmVyeV93ZWlnaHRzMTgsCiAgICB2ZXJzaW9uMTksCik6CiAgICAjIOeUn+aIkGZpbGVsaXN0CiAgICBleHBfZGlyID0gJnF1b3Q7JXMvbG9ncy8lcyZxdW90OyAlIChub3dfZGlyLCBleHBfZGlyMSkKICAgIG9zLm1ha2VkaXJzKGV4cF9kaXIsIGV4aXN0X29rPVRydWUpCiAgICBndF93YXZzX2RpciA9ICZxdW90OyVzLzBfZ3Rfd2F2cyZxdW90OyAlIChleHBfZGlyKQogICAgZmVhdHVyZV9kaXIgPSAoCiAgICAgICAgJnF1b3Q7JXMvM19mZWF0dXJlMjU2JnF1b3Q7ICUgKGV4cF9kaXIpCiAgICAgICAgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7CiAgICAgICAgZWxzZSAmcXVvdDslcy8zX2ZlYXR1cmU3NjgmcXVvdDsgJSAoZXhwX2RpcikKICAgICkKICAgIGlmIGlmX2YwXzM6CiAgICAgICAgZjBfZGlyID0gJnF1b3Q7JXMvMmFfZjAmcXVvdDsgJSAoZXhwX2RpcikKICAgICAgICBmMG5zZl9kaXIgPSAmcXVvdDslcy8yYi1mMG5zZiZxdW90OyAlIChleHBfZGlyKQogICAgICAgIG5hbWVzID0gKAogICAgICAgICAgICBzZXQoW25hbWUuc3BsaXQoJnF1b3Q7LiZxdW90OylbMF0gZm9yIG5hbWUgaW4gb3MubGlzdGRpcihndF93YXZzX2RpcildKQogICAgICAgICAgICAmYW1wOyBzZXQoW25hbWUuc3BsaXQoJnF1b3Q7LiZxdW90OylbMF0gZm9yIG5hbWUgaW4gb3MubGlzdGRpcihmZWF0dXJlX2RpcildKQogICAgICAgICAgICAmYW1wOyBzZXQoW25hbWUuc3BsaXQoJnF1b3Q7LiZxdW90OylbMF0gZm9yIG5hbWUgaW4gb3MubGlzdGRpcihmMF9kaXIpXSkKICAgICAgICAgICAgJmFtcDsgc2V0KFtuYW1lLnNwbGl0KCZxdW90Oy4mcXVvdDspWzBdIGZvciBuYW1lIGluIG9zLmxpc3RkaXIoZjBuc2ZfZGlyKV0pCiAgICAgICAgKQogICAgZWxzZToKICAgICAgICBuYW1lcyA9IHNldChbbmFtZS5zcGxpdCgmcXVvdDsuJnF1b3Q7KVswXSBmb3IgbmFtZSBpbiBvcy5saXN0ZGlyKGd0X3dhdnNfZGlyKV0pICZhbXA7IHNldCgKICAgICAgICAgICAgW25hbWUuc3BsaXQoJnF1b3Q7LiZxdW90OylbMF0gZm9yIG5hbWUgaW4gb3MubGlzdGRpcihmZWF0dXJlX2RpcildCiAgICAgICAgKQogICAgb3B0ID0gW10KICAgIGZvciBuYW1lIGluIG5hbWVzOgogICAgICAgIGlmIGlmX2YwXzM6CiAgICAgICAgICAgIG9wdC5hcHBlbmQoCiAgICAgICAgICAgICAgICAmcXVvdDslcy8lcy53YXZ8JXMvJXMubnB5fCVzLyVzLndhdi5ucHl8JXMvJXMud2F2Lm5weXwlcyZxdW90OwogICAgICAgICAgICAgICAgJSAoCiAgICAgICAgICAgICAgICAgICAgZ3Rfd2F2c19kaXIucmVwbGFjZSgmcXVvdDtcXCZxdW90OywgJnF1b3Q7XFxcXCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgbmFtZSwKICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2Rpci5yZXBsYWNlKCZxdW90O1xcJnF1b3Q7LCAmcXVvdDtcXFxcJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICBuYW1lLAogICAgICAgICAgICAgICAgICAgIGYwX2Rpci5yZXBsYWNlKCZxdW90O1xcJnF1b3Q7LCAmcXVvdDtcXFxcJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICBuYW1lLAogICAgICAgICAgICAgICAgICAgIGYwbnNmX2Rpci5yZXBsYWNlKCZxdW90O1xcJnF1b3Q7LCAmcXVvdDtcXFxcJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICBuYW1lLAogICAgICAgICAgICAgICAgICAgIHNwa19pZDUsCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICBvcHQuYXBwZW5kKAogICAgICAgICAgICAgICAgJnF1b3Q7JXMvJXMud2F2fCVzLyVzLm5weXwlcyZxdW90OwogICAgICAgICAgICAgICAgJSAoCiAgICAgICAgICAgICAgICAgICAgZ3Rfd2F2c19kaXIucmVwbGFjZSgmcXVvdDtcXCZxdW90OywgJnF1b3Q7XFxcXCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgbmFtZSwKICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2Rpci5yZXBsYWNlKCZxdW90O1xcJnF1b3Q7LCAmcXVvdDtcXFxcJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICBuYW1lLAogICAgICAgICAgICAgICAgICAgIHNwa19pZDUsCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICkKICAgIGZlYV9kaW0gPSAyNTYgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7IGVsc2UgNzY4CiAgICBpZiBpZl9mMF8zOgogICAgICAgIGZvciBfIGluIHJhbmdlKDIpOgogICAgICAgICAgICBvcHQuYXBwZW5kKAogICAgICAgICAgICAgICAgJnF1b3Q7JXMvbG9ncy9tdXRlLzBfZ3Rfd2F2cy9tdXRlJXMud2F2fCVzL2xvZ3MvbXV0ZS8zX2ZlYXR1cmUlcy9tdXRlLm5weXwlcy9sb2dzL211dGUvMmFfZjAvbXV0ZS53YXYubnB5fCVzL2xvZ3MvbXV0ZS8yYi1mMG5zZi9tdXRlLndhdi5ucHl8JXMmcXVvdDsKICAgICAgICAgICAgICAgICUgKG5vd19kaXIsIHNyMiwgbm93X2RpciwgZmVhX2RpbSwgbm93X2Rpciwgbm93X2Rpciwgc3BrX2lkNSkKICAgICAgICAgICAgKQogICAgZWxzZToKICAgICAgICBmb3IgXyBpbiByYW5nZSgyKToKICAgICAgICAgICAgb3B0LmFwcGVuZCgKICAgICAgICAgICAgICAgICZxdW90OyVzL2xvZ3MvbXV0ZS8wX2d0X3dhdnMvbXV0ZSVzLndhdnwlcy9sb2dzL211dGUvM19mZWF0dXJlJXMvbXV0ZS5ucHl8JXMmcXVvdDsKICAgICAgICAgICAgICAgICUgKG5vd19kaXIsIHNyMiwgbm93X2RpciwgZmVhX2RpbSwgc3BrX2lkNSkKICAgICAgICAgICAgKQogICAgc2h1ZmZsZShvcHQpCiAgICB3aXRoIG9wZW4oJnF1b3Q7JXMvZmlsZWxpc3QudHh0JnF1b3Q7ICUgZXhwX2RpciwgJnF1b3Q7dyZxdW90OykgYXMgZjoKICAgICAgICBmLndyaXRlKCZxdW90O1xuJnF1b3Q7LmpvaW4ob3B0KSkKICAgIGxvZ2dlci5kZWJ1ZygmcXVvdDtXcml0ZSBmaWxlbGlzdCBkb25lJnF1b3Q7KQogICAgIyDnlJ/miJBjb25maWcj5peg6ZyA55Sf5oiQY29uZmlnCiAgICAjIGNtZCA9IHB5dGhvbl9jbWQgKyAmcXVvdDsgdHJhaW5fbnNmX3NpbV9jYWNoZV9zaWRfbG9hZF9wcmV0cmFpbi5weSAtZSBtaS10ZXN0IC1zciA0MGsgLWYwIDEgLWJzIDQgLWcgMCAtdGUgMTAgLXNlIDUgLXBnIHByZXRyYWluZWQvZjBHNDBrLnB0aCAtcGQgcHJldHJhaW5lZC9mMEQ0MGsucHRoIC1sIDEgLWMgMCZxdW90OwogICAgbG9nZ2VyLmluZm8oJnF1b3Q7VXNlIGdwdXM6ICVzJnF1b3Q7LCBzdHIoZ3B1czE2KSkKICAgIGlmIHByZXRyYWluZWRfRzE0ID09ICZxdW90OyZxdW90OzoKICAgICAgICBsb2dnZXIuaW5mbygmcXVvdDtObyBwcmV0cmFpbmVkIEdlbmVyYXRvciZxdW90OykKICAgIGlmIHByZXRyYWluZWRfRDE1ID09ICZxdW90OyZxdW90OzoKICAgICAgICBsb2dnZXIuaW5mbygmcXVvdDtObyBwcmV0cmFpbmVkIERpc2NyaW1pbmF0b3ImcXVvdDspCiAgICBpZiB2ZXJzaW9uMTkgPT0gJnF1b3Q7djEmcXVvdDsgb3Igc3IyID09ICZxdW90OzQwayZxdW90OzoKICAgICAgICBjb25maWdfcGF0aCA9ICZxdW90O3YxLyVzLmpzb24mcXVvdDsgJSBzcjIKICAgIGVsc2U6CiAgICAgICAgY29uZmlnX3BhdGggPSAmcXVvdDt2Mi8lcy5qc29uJnF1b3Q7ICUgc3IyCiAgICBjb25maWdfc2F2ZV9wYXRoID0gb3MucGF0aC5qb2luKGV4cF9kaXIsICZxdW90O2NvbmZpZy5qc29uJnF1b3Q7KQogICAgaWYgbm90IHBhdGhsaWIuUGF0aChjb25maWdfc2F2ZV9wYXRoKS5leGlzdHMoKToKICAgICAgICB3aXRoIG9wZW4oY29uZmlnX3NhdmVfcGF0aCwgJnF1b3Q7dyZxdW90OywgZW5jb2Rpbmc9JnF1b3Q7dXRmLTgmcXVvdDspIGFzIGY6CiAgICAgICAgICAgIGpzb24uZHVtcCgKICAgICAgICAgICAgICAgIGNvbmZpZy5qc29uX2NvbmZpZ1tjb25maWdfcGF0aF0sCiAgICAgICAgICAgICAgICBmLAogICAgICAgICAgICAgICAgZW5zdXJlX2FzY2lpPUZhbHNlLAogICAgICAgICAgICAgICAgaW5kZW50PTQsCiAgICAgICAgICAgICAgICBzb3J0X2tleXM9VHJ1ZSwKICAgICAgICAgICAgKQogICAgICAgICAgICBmLndyaXRlKCZxdW90O1xuJnF1b3Q7KQogICAgaWYgZ3B1czE2OgogICAgICAgIGNtZCA9ICgKICAgICAgICAgICAgJyZxdW90OyVzJnF1b3Q7IGluZmVyL21vZHVsZXMvdHJhaW4vdHJhaW4ucHkgLWUgJnF1b3Q7JXMmcXVvdDsgLXNyICVzIC1mMCAlcyAtYnMgJXMgLWcgJXMgLXRlICVzIC1zZSAlcyAlcyAlcyAtbCAlcyAtYyAlcyAtc3cgJXMgLXYgJXMnCiAgICAgICAgICAgICUgKAogICAgICAgICAgICAgICAgY29uZmlnLnB5dGhvbl9jbWQsCiAgICAgICAgICAgICAgICBleHBfZGlyMSwKICAgICAgICAgICAgICAgIHNyMiwKICAgICAgICAgICAgICAgIDEgaWYgaWZfZjBfMyBlbHNlIDAsCiAgICAgICAgICAgICAgICBiYXRjaF9zaXplMTIsCiAgICAgICAgICAgICAgICBncHVzMTYsCiAgICAgICAgICAgICAgICB0b3RhbF9lcG9jaDExLAogICAgICAgICAgICAgICAgc2F2ZV9lcG9jaDEwLAogICAgICAgICAgICAgICAgJnF1b3Q7LXBnICVzJnF1b3Q7ICUgcHJldHJhaW5lZF9HMTQgaWYgcHJldHJhaW5lZF9HMTQgIT0gJnF1b3Q7JnF1b3Q7IGVsc2UgJnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7LXBkICVzJnF1b3Q7ICUgcHJldHJhaW5lZF9EMTUgaWYgcHJldHJhaW5lZF9EMTUgIT0gJnF1b3Q7JnF1b3Q7IGVsc2UgJnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgMSBpZiBpZl9zYXZlX2xhdGVzdDEzID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICAxIGlmIGlmX2NhY2hlX2dwdTE3ID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICAxIGlmIGlmX3NhdmVfZXZlcnlfd2VpZ2h0czE4ID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICB2ZXJzaW9uMTksCiAgICAgICAgICAgICkKICAgICAgICApCiAgICBlbHNlOgogICAgICAgIGNtZCA9ICgKICAgICAgICAgICAgJyZxdW90OyVzJnF1b3Q7IGluZmVyL21vZHVsZXMvdHJhaW4vdHJhaW4ucHkgLWUgJnF1b3Q7JXMmcXVvdDsgLXNyICVzIC1mMCAlcyAtYnMgJXMgLXRlICVzIC1zZSAlcyAlcyAlcyAtbCAlcyAtYyAlcyAtc3cgJXMgLXYgJXMnCiAgICAgICAgICAgICUgKAogICAgICAgICAgICAgICAgY29uZmlnLnB5dGhvbl9jbWQsCiAgICAgICAgICAgICAgICBleHBfZGlyMSwKICAgICAgICAgICAgICAgIHNyMiwKICAgICAgICAgICAgICAgIDEgaWYgaWZfZjBfMyBlbHNlIDAsCiAgICAgICAgICAgICAgICBiYXRjaF9zaXplMTIsCiAgICAgICAgICAgICAgICB0b3RhbF9lcG9jaDExLAogICAgICAgICAgICAgICAgc2F2ZV9lcG9jaDEwLAogICAgICAgICAgICAgICAgJnF1b3Q7LXBnICVzJnF1b3Q7ICUgcHJldHJhaW5lZF9HMTQgaWYgcHJldHJhaW5lZF9HMTQgIT0gJnF1b3Q7JnF1b3Q7IGVsc2UgJnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgJnF1b3Q7LXBkICVzJnF1b3Q7ICUgcHJldHJhaW5lZF9EMTUgaWYgcHJldHJhaW5lZF9EMTUgIT0gJnF1b3Q7JnF1b3Q7IGVsc2UgJnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgMSBpZiBpZl9zYXZlX2xhdGVzdDEzID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICAxIGlmIGlmX2NhY2hlX2dwdTE3ID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICAxIGlmIGlmX3NhdmVfZXZlcnlfd2VpZ2h0czE4ID09IGkxOG4oJnF1b3Q75pivJnF1b3Q7KSBlbHNlIDAsCiAgICAgICAgICAgICAgICB2ZXJzaW9uMTksCiAgICAgICAgICAgICkKICAgICAgICApCiAgICBsb2dnZXIuaW5mbygmcXVvdDtFeGVjdXRlOiAmcXVvdDsgKyBjbWQpCiAgICBwID0gUG9wZW4oY21kLCBzaGVsbD1UcnVlLCBjd2Q9bm93X2RpcikKICAgIHAud2FpdCgpCiAgICByZXR1cm4gJnF1b3Q76K6t57uD57uT5p2fLCDmgqjlj6/mn6XnnIvmjqfliLblj7Dorq3nu4Pml6Xlv5fmiJblrp7pqozmlofku7blpLnkuIvnmoR0cmFpbi5sb2cmcXVvdDsKCgojIGJ1dDQuY2xpY2sodHJhaW5faW5kZXgsIFtleHBfZGlyMV0sIGluZm8zKQpkZWYgdHJhaW5faW5kZXgoZXhwX2RpcjEsIHZlcnNpb24xOSk6CiAgICAjIGV4cF9kaXIgPSAmcXVvdDslcy9sb2dzLyVzJnF1b3Q7ICUgKG5vd19kaXIsIGV4cF9kaXIxKQogICAgZXhwX2RpciA9ICZxdW90O2xvZ3MvJXMmcXVvdDsgJSAoZXhwX2RpcjEpCiAgICBvcy5tYWtlZGlycyhleHBfZGlyLCBleGlzdF9vaz1UcnVlKQogICAgZmVhdHVyZV9kaXIgPSAoCiAgICAgICAgJnF1b3Q7JXMvM19mZWF0dXJlMjU2JnF1b3Q7ICUgKGV4cF9kaXIpCiAgICAgICAgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7CiAgICAgICAgZWxzZSAmcXVvdDslcy8zX2ZlYXR1cmU3NjgmcXVvdDsgJSAoZXhwX2RpcikKICAgICkKICAgIGlmIG5vdCBvcy5wYXRoLmV4aXN0cyhmZWF0dXJlX2Rpcik6CiAgICAgICAgcmV0dXJuICZxdW90O+ivt+WFiOi/m+ihjOeJueW+geaPkOWPliEmcXVvdDsKICAgIGxpc3RkaXJfcmVzID0gbGlzdChvcy5saXN0ZGlyKGZlYXR1cmVfZGlyKSkKICAgIGlmIGxlbihsaXN0ZGlyX3JlcykgPT0gMDoKICAgICAgICByZXR1cm4gJnF1b3Q76K+35YWI6L+b6KGM54m55b6B5o+Q5Y+W77yBJnF1b3Q7CiAgICBpbmZvcyA9IFtdCiAgICBucHlzID0gW10KICAgIGZvciBuYW1lIGluIHNvcnRlZChsaXN0ZGlyX3Jlcyk6CiAgICAgICAgcGhvbmUgPSBucC5sb2FkKCZxdW90OyVzLyVzJnF1b3Q7ICUgKGZlYXR1cmVfZGlyLCBuYW1lKSkKICAgICAgICBucHlzLmFwcGVuZChwaG9uZSkKICAgIGJpZ19ucHkgPSBucC5jb25jYXRlbmF0ZShucHlzLCAwKQogICAgYmlnX25weV9pZHggPSBucC5hcmFuZ2UoYmlnX25weS5zaGFwZVswXSkKICAgIG5wLnJhbmRvbS5zaHVmZmxlKGJpZ19ucHlfaWR4KQogICAgYmlnX25weSA9IGJpZ19ucHlbYmlnX25weV9pZHhdCiAgICBpZiBiaWdfbnB5LnNoYXBlWzBdICZndDsgMmU1OgogICAgICAgIGluZm9zLmFwcGVuZCgmcXVvdDtUcnlpbmcgZG9pbmcga21lYW5zICVzIHNoYXBlIHRvIDEwayBjZW50ZXJzLiZxdW90OyAlIGJpZ19ucHkuc2hhcGVbMF0pCiAgICAgICAgeWllbGQgJnF1b3Q7XG4mcXVvdDsuam9pbihpbmZvcykKICAgICAgICB0cnk6CiAgICAgICAgICAgIGJpZ19ucHkgPSAoCiAgICAgICAgICAgICAgICBNaW5pQmF0Y2hLTWVhbnMoCiAgICAgICAgICAgICAgICAgICAgbl9jbHVzdGVycz0xMDAwMCwKICAgICAgICAgICAgICAgICAgICB2ZXJib3NlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgYmF0Y2hfc2l6ZT0yNTYgKiBjb25maWcubl9jcHUsCiAgICAgICAgICAgICAgICAgICAgY29tcHV0ZV9sYWJlbHM9RmFsc2UsCiAgICAgICAgICAgICAgICAgICAgaW5pdD0mcXVvdDtyYW5kb20mcXVvdDssCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAuZml0KGJpZ19ucHkpCiAgICAgICAgICAgICAgICAuY2x1c3Rlcl9jZW50ZXJzXwogICAgICAgICAgICApCiAgICAgICAgZXhjZXB0OgogICAgICAgICAgICBpbmZvID0gdHJhY2ViYWNrLmZvcm1hdF9leGMoKQogICAgICAgICAgICBsb2dnZXIuaW5mbyhpbmZvKQogICAgICAgICAgICBpbmZvcy5hcHBlbmQoaW5mbykKICAgICAgICAgICAgeWllbGQgJnF1b3Q7XG4mcXVvdDsuam9pbihpbmZvcykKCiAgICBucC5zYXZlKCZxdW90OyVzL3RvdGFsX2ZlYS5ucHkmcXVvdDsgJSBleHBfZGlyLCBiaWdfbnB5KQogICAgbl9pdmYgPSBtaW4oaW50KDE2ICogbnAuc3FydChiaWdfbnB5LnNoYXBlWzBdKSksIGJpZ19ucHkuc2hhcGVbMF0gLy8gMzkpCiAgICBpbmZvcy5hcHBlbmQoJnF1b3Q7JXMsJXMmcXVvdDsgJSAoYmlnX25weS5zaGFwZSwgbl9pdmYpKQogICAgeWllbGQgJnF1b3Q7XG4mcXVvdDsuam9pbihpbmZvcykKICAgIGluZGV4ID0gZmFpc3MuaW5kZXhfZmFjdG9yeSgyNTYgaWYgdmVyc2lvbjE5ID09ICZxdW90O3YxJnF1b3Q7IGVsc2UgNzY4LCAmcXVvdDtJVkYlcyxGbGF0JnF1b3Q7ICUgbl9pdmYpCiAgICAjIGluZGV4ID0gZmFpc3MuaW5kZXhfZmFjdG9yeSgyNTZpZiB2ZXJzaW9uMTk9PSZxdW90O3YxJnF1b3Q7ZWxzZSA3NjgsICZxdW90O0lWRiVzLFBRMTI4eDRmcyxSRmxhdCZxdW90OyVuX2l2ZikKICAgIGluZm9zLmFwcGVuZCgmcXVvdDt0cmFpbmluZyZxdW90OykKICAgIHlpZWxkICZxdW90O1xuJnF1b3Q7LmpvaW4oaW5mb3MpCiAgICBpbmRleF9pdmYgPSBmYWlzcy5leHRyYWN0X2luZGV4X2l2ZihpbmRleCkgICMKICAgIGluZGV4X2l2Zi5ucHJvYmUgPSAxCiAgICBpbmRleC50cmFpbihiaWdfbnB5KQogICAgZmFpc3Mud3JpdGVfaW5kZXgoCiAgICAgICAgaW5kZXgsCiAgICAgICAgJnF1b3Q7JXMvdHJhaW5lZF9JVkYlc19GbGF0X25wcm9iZV8lc18lc18lcy5pbmRleCZxdW90OwogICAgICAgICUgKGV4cF9kaXIsIG5faXZmLCBpbmRleF9pdmYubnByb2JlLCBleHBfZGlyMSwgdmVyc2lvbjE5KSwKICAgICkKICAgIGluZm9zLmFwcGVuZCgmcXVvdDthZGRpbmcmcXVvdDspCiAgICB5aWVsZCAmcXVvdDtcbiZxdW90Oy5qb2luKGluZm9zKQogICAgYmF0Y2hfc2l6ZV9hZGQgPSA4MTkyCiAgICBmb3IgaSBpbiByYW5nZSgwLCBiaWdfbnB5LnNoYXBlWzBdLCBiYXRjaF9zaXplX2FkZCk6CiAgICAgICAgaW5kZXguYWRkKGJpZ19ucHlbaSA6IGkgKyBiYXRjaF9zaXplX2FkZF0pCiAgICBmYWlzcy53cml0ZV9pbmRleCgKICAgICAgICBpbmRleCwKICAgICAgICAmcXVvdDslcy9hZGRlZF9JVkYlc19GbGF0X25wcm9iZV8lc18lc18lcy5pbmRleCZxdW90OwogICAgICAgICUgKGV4cF9kaXIsIG5faXZmLCBpbmRleF9pdmYubnByb2JlLCBleHBfZGlyMSwgdmVyc2lvbjE5KSwKICAgICkKICAgIGluZm9zLmFwcGVuZCgKICAgICAgICAmcXVvdDvmiJDlip/mnoTlu7rntKLlvJUgYWRkZWRfSVZGJXNfRmxhdF9ucHJvYmVfJXNfJXNfJXMuaW5kZXgmcXVvdDsKICAgICAgICAlIChuX2l2ZiwgaW5kZXhfaXZmLm5wcm9iZSwgZXhwX2RpcjEsIHZlcnNpb24xOSkKICAgICkKICAgIHRyeToKICAgICAgICBsaW5rID0gb3MubGluayBpZiBwbGF0Zm9ybS5zeXN0ZW0oKSA9PSAmcXVvdDtXaW5kb3dzJnF1b3Q7IGVsc2Ugb3Muc3ltbGluawogICAgICAgIGxpbmsoCiAgICAgICAgICAgICZxdW90OyVzL2FkZGVkX0lWRiVzX0ZsYXRfbnByb2JlXyVzXyVzXyVzLmluZGV4JnF1b3Q7CiAgICAgICAgICAgICUgKGV4cF9kaXIsIG5faXZmLCBpbmRleF9pdmYubnByb2JlLCBleHBfZGlyMSwgdmVyc2lvbjE5KSwKICAgICAgICAgICAgJnF1b3Q7JXMvJXNfSVZGJXNfRmxhdF9ucHJvYmVfJXNfJXNfJXMuaW5kZXgmcXVvdDsKICAgICAgICAgICAgJSAoCiAgICAgICAgICAgICAgICBvdXRzaWRlX2luZGV4X3Jvb3QsCiAgICAgICAgICAgICAgICBleHBfZGlyMSwKICAgICAgICAgICAgICAgIG5faXZmLAogICAgICAgICAgICAgICAgaW5kZXhfaXZmLm5wcm9iZSwKICAgICAgICAgICAgICAgIGV4cF9kaXIxLAogICAgICAgICAgICAgICAgdmVyc2lvbjE5LAogICAgICAgICAgICApLAogICAgICAgICkKICAgICAgICBpbmZvcy5hcHBlbmQoJnF1b3Q76ZO+5o6l57Si5byV5Yiw5aSW6YOoLSVzJnF1b3Q7ICUgKG91dHNpZGVfaW5kZXhfcm9vdCkpCiAgICBleGNlcHQ6CiAgICAgICAgaW5mb3MuYXBwZW5kKCZxdW90O+mTvuaOpee0ouW8leWIsOWklumDqC0lc+Wksei0pSZxdW90OyAlIChvdXRzaWRlX2luZGV4X3Jvb3QpKQoKICAgICMgZmFpc3Mud3JpdGVfaW5kZXgoaW5kZXgsICclcy9hZGRlZF9JVkYlc19GbGF0X0Zhc3RTY2FuXyVzLmluZGV4JyUoZXhwX2RpcixuX2l2Zix2ZXJzaW9uMTkpKQogICAgIyBpbmZvcy5hcHBlbmQoJnF1b3Q75oiQ5Yqf5p6E5bu657Si5byV77yMYWRkZWRfSVZGJXNfRmxhdF9GYXN0U2Nhbl8lcy5pbmRleCZxdW90OyUobl9pdmYsdmVyc2lvbjE5KSkKICAgIHlpZWxkICZxdW90O1xuJnF1b3Q7LmpvaW4oaW5mb3MpCgoKIyBidXQ1LmNsaWNrKHRyYWluMWtleSwgW2V4cF9kaXIxLCBzcjIsIGlmX2YwXzMsIHRyYWluc2V0X2RpcjQsIHNwa19pZDUsIGdwdXM2LCBucDcsIGYwbWV0aG9kOCwgc2F2ZV9lcG9jaDEwLCB0b3RhbF9lcG9jaDExLCBiYXRjaF9zaXplMTIsIGlmX3NhdmVfbGF0ZXN0MTMsIHByZXRyYWluZWRfRzE0LCBwcmV0cmFpbmVkX0QxNSwgZ3B1czE2LCBpZl9jYWNoZV9ncHUxN10sIGluZm8zKQpkZWYgdHJhaW4xa2V5KAogICAgZXhwX2RpcjEsCiAgICBzcjIsCiAgICBpZl9mMF8zLAogICAgdHJhaW5zZXRfZGlyNCwKICAgIHNwa19pZDUsCiAgICBucDcsCiAgICBmMG1ldGhvZDgsCiAgICBzYXZlX2Vwb2NoMTAsCiAgICB0b3RhbF9lcG9jaDExLAogICAgYmF0Y2hfc2l6ZTEyLAogICAgaWZfc2F2ZV9sYXRlc3QxMywKICAgIHByZXRyYWluZWRfRzE0LAogICAgcHJldHJhaW5lZF9EMTUsCiAgICBncHVzMTYsCiAgICBpZl9jYWNoZV9ncHUxNywKICAgIGlmX3NhdmVfZXZlcnlfd2VpZ2h0czE4LAogICAgdmVyc2lvbjE5LAogICAgZ3B1c19ybXZwZSwKKToKICAgIGluZm9zID0gW10KCiAgICBkZWYgZ2V0X2luZm9fc3RyKHN0cnIpOgogICAgICAgIGluZm9zLmFwcGVuZChzdHJyKQogICAgICAgIHJldHVybiAmcXVvdDtcbiZxdW90Oy5qb2luKGluZm9zKQoKICAgICMgc3RlcDE65aSE55CG5pWw5o2uCiAgICB5aWVsZCBnZXRfaW5mb19zdHIoaTE4bigmcXVvdDtzdGVwMTrmraPlnKjlpITnkIbmlbDmja4mcXVvdDspKQogICAgW2dldF9pbmZvX3N0cihfKSBmb3IgXyBpbiBwcmVwcm9jZXNzX2RhdGFzZXQodHJhaW5zZXRfZGlyNCwgZXhwX2RpcjEsIHNyMiwgbnA3KV0KCiAgICAjIHN0ZXAyYTrmj5Dlj5bpn7Ppq5gKICAgIHlpZWxkIGdldF9pbmZvX3N0cihpMThuKCZxdW90O3N0ZXAyOuato+WcqOaPkOWPlumfs+mrmCZhbXA75q2j5Zyo5o+Q5Y+W54m55b6BJnF1b3Q7KSkKICAgIFsKICAgICAgICBnZXRfaW5mb19zdHIoXykKICAgICAgICBmb3IgXyBpbiBleHRyYWN0X2YwX2ZlYXR1cmUoCiAgICAgICAgICAgIGdwdXMxNiwgbnA3LCBmMG1ldGhvZDgsIGlmX2YwXzMsIGV4cF9kaXIxLCB2ZXJzaW9uMTksIGdwdXNfcm12cGUKICAgICAgICApCiAgICBdCgogICAgIyBzdGVwM2E66K6t57uD5qih5Z6LCiAgICB5aWVsZCBnZXRfaW5mb19zdHIoaTE4bigmcXVvdDtzdGVwM2E65q2j5Zyo6K6t57uD5qih5Z6LJnF1b3Q7KSkKICAgIGNsaWNrX3RyYWluKAogICAgICAgIGV4cF9kaXIxLAogICAgICAgIHNyMiwKICAgICAgICBpZl9mMF8zLAogICAgICAgIHNwa19pZDUsCiAgICAgICAgc2F2ZV9lcG9jaDEwLAogICAgICAgIHRvdGFsX2Vwb2NoMTEsCiAgICAgICAgYmF0Y2hfc2l6ZTEyLAogICAgICAgIGlmX3NhdmVfbGF0ZXN0MTMsCiAgICAgICAgcHJldHJhaW5lZF9HMTQsCiAgICAgICAgcHJldHJhaW5lZF9EMTUsCiAgICAgICAgZ3B1czE2LAogICAgICAgIGlmX2NhY2hlX2dwdTE3LAogICAgICAgIGlmX3NhdmVfZXZlcnlfd2VpZ2h0czE4LAogICAgICAgIHZlcnNpb24xOSwKICAgICkKICAgIHlpZWxkIGdldF9pbmZvX3N0cigKICAgICAgICBpMThuKCZxdW90O+iuree7g+e7k+adnywg5oKo5Y+v5p+l55yL5o6n5Yi25Y+w6K6t57uD5pel5b+X5oiW5a6e6aqM5paH5Lu25aS55LiL55qEdHJhaW4ubG9nJnF1b3Q7KQogICAgKQoKICAgICMgc3RlcDNiOuiuree7g+e0ouW8lQogICAgW2dldF9pbmZvX3N0cihfKSBmb3IgXyBpbiB0cmFpbl9pbmRleChleHBfZGlyMSwgdmVyc2lvbjE5KV0KICAgIHlpZWxkIGdldF9pbmZvX3N0cihpMThuKCZxdW90O+WFqOa1geeoi+e7k+adn++8gSZxdW90OykpCgoKIyAgICAgICAgICAgICAgICAgICAgY2twdF9wYXRoMi5jaGFuZ2UoY2hhbmdlX2luZm9fLFtja3B0X3BhdGgyXSxbc3JfXyxpZl9mMF9fXSkKZGVmIGNoYW5nZV9pbmZvXyhja3B0X3BhdGgpOgogICAgaWYgbm90IG9zLnBhdGguZXhpc3RzKGNrcHRfcGF0aC5yZXBsYWNlKG9zLnBhdGguYmFzZW5hbWUoY2twdF9wYXRoKSwgJnF1b3Q7dHJhaW4ubG9nJnF1b3Q7KSk6CiAgICAgICAgcmV0dXJuIHsmcXVvdDtfX3R5cGVfXyZxdW90OzogJnF1b3Q7dXBkYXRlJnF1b3Q7fSwgeyZxdW90O19fdHlwZV9fJnF1b3Q7OiAmcXVvdDt1cGRhdGUmcXVvdDt9LCB7JnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90O30KICAgIHRyeToKICAgICAgICB3aXRoIG9wZW4oCiAgICAgICAgICAgIGNrcHRfcGF0aC5yZXBsYWNlKG9zLnBhdGguYmFzZW5hbWUoY2twdF9wYXRoKSwgJnF1b3Q7dHJhaW4ubG9nJnF1b3Q7KSwgJnF1b3Q7ciZxdW90OwogICAgICAgICkgYXMgZjoKICAgICAgICAgICAgaW5mbyA9IGV2YWwoZi5yZWFkKCkuc3RyaXAoJnF1b3Q7XG4mcXVvdDspLnNwbGl0KCZxdW90O1xuJnF1b3Q7KVswXS5zcGxpdCgmcXVvdDtcdCZxdW90OylbLTFdKQogICAgICAgICAgICBzciwgZjAgPSBpbmZvWyZxdW90O3NhbXBsZV9yYXRlJnF1b3Q7XSwgaW5mb1smcXVvdDtpZl9mMCZxdW90O10KICAgICAgICAgICAgdmVyc2lvbiA9ICZxdW90O3YyJnF1b3Q7IGlmICgmcXVvdDt2ZXJzaW9uJnF1b3Q7IGluIGluZm8gYW5kIGluZm9bJnF1b3Q7dmVyc2lvbiZxdW90O10gPT0gJnF1b3Q7djImcXVvdDspIGVsc2UgJnF1b3Q7djEmcXVvdDsKICAgICAgICAgICAgcmV0dXJuIHNyLCBzdHIoZjApLCB2ZXJzaW9uCiAgICBleGNlcHQ6CiAgICAgICAgdHJhY2ViYWNrLnByaW50X2V4YygpCiAgICAgICAgcmV0dXJuIHsmcXVvdDtfX3R5cGVfXyZxdW90OzogJnF1b3Q7dXBkYXRlJnF1b3Q7fSwgeyZxdW90O19fdHlwZV9fJnF1b3Q7OiAmcXVvdDt1cGRhdGUmcXVvdDt9LCB7JnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90O30KCgpGMEdQVVZpc2libGUgPSBjb25maWcuZG1sID09IEZhbHNlCgoKZGVmIGNoYW5nZV9mMF9tZXRob2QoZjBtZXRob2Q4KToKICAgIGlmIGYwbWV0aG9kOCA9PSAmcXVvdDtybXZwZV9ncHUmcXVvdDs6CiAgICAgICAgdmlzaWJsZSA9IEYwR1BVVmlzaWJsZQogICAgZWxzZToKICAgICAgICB2aXNpYmxlID0gRmFsc2UKICAgIHJldHVybiB7JnF1b3Q7dmlzaWJsZSZxdW90OzogdmlzaWJsZSwgJnF1b3Q7X190eXBlX18mcXVvdDs6ICZxdW90O3VwZGF0ZSZxdW90O30KCgp3aXRoIGdyLkJsb2Nrcyh0aXRsZT0mcXVvdDtSVkMgV2ViVUkmcXVvdDspIGFzIGFwcDoKICAgIGdyLk1hcmtkb3duKCZxdW90OyMjIFJWQyBXZWJVSSZxdW90OykKICAgIGdyLk1hcmtkb3duKAogICAgICAgIHZhbHVlPWkxOG4oCiAgICAgICAgICAgICZxdW90O+acrOi9r+S7tuS7pU1JVOWNj+iuruW8gOa6kCwg5L2c6ICF5LiN5a+56L2v5Lu25YW35aSH5Lu75L2V5o6n5Yi25YqbLCDkvb/nlKjova/ku7bogIXjgIHkvKDmkq3ova/ku7blr7zlh7rnmoTlo7Dpn7PogIXoh6rotJ/lhajotKMuICZsdDticiZndDvlpoLkuI3orqTlj6/or6XmnaHmrL4sIOWImeS4jeiDveS9v+eUqOaIluW8leeUqOi9r+S7tuWMheWGheS7u+S9leS7o+eggeWSjOaWh+S7ti4g6K+m6KeB5qC555uu5b2VJmx0O2ImZ3Q7TElDRU5TRSZsdDsvYiZndDsuJnF1b3Q7CiAgICAgICAgKQogICAgKQogICAgd2l0aCBnci5UYWJzKCk6CiAgICAgICAgd2l0aCBnci5UYWJJdGVtKGkxOG4oJnF1b3Q75qih5Z6L5o6o55CGJnF1b3Q7KSk6CiAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICBzaWQwID0gZ3IuRHJvcGRvd24obGFiZWw9aTE4bigmcXVvdDvmjqjnkIbpn7PoibImcXVvdDspLCBjaG9pY2VzPXNvcnRlZChuYW1lcykpCiAgICAgICAgICAgICAgICB3aXRoIGdyLkNvbHVtbigpOgogICAgICAgICAgICAgICAgICAgIHJlZnJlc2hfYnV0dG9uID0gZ3IuQnV0dG9uKAogICAgICAgICAgICAgICAgICAgICAgICBpMThuKCZxdW90O+WIt+aWsOmfs+iJsuWIl+ihqOWSjOe0ouW8lei3r+W+hCZxdW90OyksIHZhcmlhbnQ9JnF1b3Q7cHJpbWFyeSZxdW90OwogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBjbGVhbl9idXR0b24gPSBnci5CdXR0b24oaTE4bigmcXVvdDvljbjovb3pn7PoibLnnIHmmL7lrZgmcXVvdDspLCB2YXJpYW50PSZxdW90O3ByaW1hcnkmcXVvdDspCiAgICAgICAgICAgICAgICBzcGtfaXRlbSA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgbWF4aW11bT0yMzMzLAogICAgICAgICAgICAgICAgICAgIHN0ZXA9MSwKICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+ivt+mAieaLqeivtOivneS6umlkJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICB2YWx1ZT0wLAogICAgICAgICAgICAgICAgICAgIHZpc2libGU9RmFsc2UsCiAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGNsZWFuX2J1dHRvbi5jbGljaygKICAgICAgICAgICAgICAgICAgICBmbj1jbGVhbiwgaW5wdXRzPVtdLCBvdXRwdXRzPVtzaWQwXSwgYXBpX25hbWU9JnF1b3Q7aW5mZXJfY2xlYW4mcXVvdDsKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgd2l0aCBnci5UYWJJdGVtKGkxOG4oJnF1b3Q75Y2V5qyh5o6o55CGJnF1b3Q7KSk6CiAgICAgICAgICAgICAgICB3aXRoIGdyLkdyb3VwKCk6CiAgICAgICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICAgICAgd2l0aCBnci5Db2x1bW4oKToKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZjX3RyYW5zZm9ybTAgPSBnci5OdW1iZXIoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvlj5josIMo5pW05pWwLCDljYrpn7PmlbDph48sIOWNh+WFq+W6pjEy6ZmN5YWr5bqmLTEyKSZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlucHV0X2F1ZGlvMCA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q76L6T5YWl5b6F5aSE55CG6Z+z6aKR5paH5Lu26Lev5b6EKOm7mOiupOaYr+ato+ehruagvOW8j+ekuuS+iykmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBsYWNlaG9sZGVyPSZxdW90O0M6XFxVc2Vyc1xcRGVza3RvcFxcYXVkaW9fZXhhbXBsZS53YXYmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2luZGV4MSA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q754m55b6B5qOA57Si5bqT5paH5Lu26Lev5b6ELOS4uuepuuWImeS9v+eUqOS4i+aLieeahOmAieaLqee7k+aenCZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxhY2Vob2xkZXI9JnF1b3Q7QzpcXFVzZXJzXFxEZXNrdG9wXFxtb2RlbF9leGFtcGxlLmluZGV4JnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2luZGV4MiA9IGdyLkRyb3Bkb3duKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q76Ieq5Yqo5qOA5rWLaW5kZXjot6/lvoQs5LiL5ouJ5byP6YCJ5oupKGRyb3Bkb3duKSZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1zb3J0ZWQoaW5kZXhfcGF0aHMpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmMG1ldGhvZDAgPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvpgInmi6npn7Ppq5jmj5Dlj5bnrpfms5Us6L6T5YWl5q2M5aOw5Y+v55SocG3mj5DpgJ8saGFydmVzdOS9jumfs+WlveS9huW3qOaFouaXoOavlCxjcmVwZeaViOaenOWlveS9huWQg0dQVSxybXZwZeaViOaenOacgOWlveS4lOW+ruWQg0dQVSZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz0oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsmcXVvdDtwbSZxdW90OywgJnF1b3Q7aGFydmVzdCZxdW90OywgJnF1b3Q7Y3JlcGUmcXVvdDssICZxdW90O3JtdnBlJnF1b3Q7XQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZiBjb25maWcuZG1sID09IEZhbHNlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVsc2UgWyZxdW90O3BtJnF1b3Q7LCAmcXVvdDtoYXJ2ZXN0JnF1b3Q7LCAmcXVvdDtybXZwZSZxdW90O10KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O3JtdnBlJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCgogICAgICAgICAgICAgICAgICAgICAgICB3aXRoIGdyLkNvbHVtbigpOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVzYW1wbGVfc3IwID0gZ3IuU2xpZGVyKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhpbXVtPTQ4MDAwLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75ZCO5aSE55CG6YeN6YeH5qC36Iez5pyA57uI6YeH5qC3546H77yMMOS4uuS4jei/m+ihjOmHjemHh+agtyZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdGVwPTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJtc19taXhfcmF0ZTAgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWluaW11bT0wLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGltdW09MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvovpPlhaXmupDpn7Pph4/ljIXnu5zmm7/mjaLovpPlh7rpn7Pph4/ljIXnu5zono3lkIjmr5TkvovvvIzotorpnaDov5Ex6LaK5L2/55So6L6T5Ye65YyF57ucJnF1b3Q7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0wLjI1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwcm90ZWN0MCA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT0wLjUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q75L+d5oqk5riF6L6F6Z+z5ZKM5ZG85ZC45aOw77yM6Ziy5q2i55S16Z+z5pKV6KOC562JYXJ0aWZhY3TvvIzmi4nmu6EwLjXkuI3lvIDlkK/vvIzosIPkvY7liqDlpKfkv53miqTlipvluqbkvYblj6/og73pmY3kvY7ntKLlvJXmlYjmnpwmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPTAuMzMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0wLjAxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXJfcmFkaXVzMCA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT03LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90OyZndDs9M+WImeS9v+eUqOWvuWhhcnZlc3Tpn7Ppq5jor4bliKvnmoTnu5Pmnpzkvb/nlKjkuK3lgLzmu6Tms6LvvIzmlbDlgLzkuLrmu6Tms6LljYrlvoTvvIzkvb/nlKjlj6/ku6XliYrlvLHlk5Hpn7MmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPTMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0xLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRleF9yYXRlMSA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT0xLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qOA57Si54m55b6B5Y2g5q+UJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0wLjc1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmMF9maWxlID0gZ3IuRmlsZSgKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDtGMOabsue6v+aWh+S7tiwg5Y+v6YCJLCDkuIDooYzkuIDkuKrpn7Ppq5gsIOS7o+abv+m7mOiupEYw5Y+K5Y2H6ZmN6LCDJnF1b3Q7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2aXNpYmxlPUZhbHNlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgKQoKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlZnJlc2hfYnV0dG9uLmNsaWNrKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZuPWNoYW5nZV9jaG9pY2VzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlucHV0cz1bXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvdXRwdXRzPVtzaWQwLCBmaWxlX2luZGV4Ml0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXBpX25hbWU9JnF1b3Q7aW5mZXJfcmVmcmVzaCZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgZmlsZV9iaWdfbnB5MSA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAjICAgICBsYWJlbD1pMThuKCZxdW90O+eJueW+geaWh+S7tui3r+W+hCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAjICAgICB2YWx1ZT0mcXVvdDtFOlxcY29kZXNccHkzOVxcdml0c192Y19ncHVfdHJhaW5cXGxvZ3NcXG1pLXRlc3QtMWtleVxcdG90YWxfZmVhLm5weSZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAjICkKICAgICAgICAgICAgICAgIHdpdGggZ3IuR3JvdXAoKToKICAgICAgICAgICAgICAgICAgICB3aXRoIGdyLkNvbHVtbigpOgogICAgICAgICAgICAgICAgICAgICAgICBidXQwID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q76L2s5o2iJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmNfb3V0cHV0MSA9IGdyLlRleHRib3gobGFiZWw9aTE4bigmcXVvdDvovpPlh7rkv6Hmga8mcXVvdDspKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmNfb3V0cHV0MiA9IGdyLkF1ZGlvKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q76L6T5Ye66Z+z6aKRKOWPs+S4i+inkuS4ieS4queCuSzngrnkuoblj6/ku6XkuIvovb0pJnF1b3Q7KQogICAgICAgICAgICAgICAgICAgICAgICAgICAgKQoKICAgICAgICAgICAgICAgICAgICAgICAgYnV0MC5jbGljaygKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZjLnZjX3NpbmdsZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzcGtfaXRlbSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnB1dF9hdWRpbzAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmNfdHJhbnNmb3JtMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmMF9maWxlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGYwbWV0aG9kMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2luZGV4MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2luZGV4MiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGZpbGVfYmlnX25weTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW5kZXhfcmF0ZTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyX3JhZGl1czAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVzYW1wbGVfc3IwLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJtc19taXhfcmF0ZTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvdGVjdDAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgW3ZjX291dHB1dDEsIHZjX291dHB1dDJdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgYXBpX25hbWU9JnF1b3Q7aW5mZXJfY29udmVydCZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICB3aXRoIGdyLlRhYkl0ZW0oaTE4bigmcXVvdDvmibnph4/mjqjnkIYmcXVvdDspKToKICAgICAgICAgICAgICAgIGdyLk1hcmtkb3duKAogICAgICAgICAgICAgICAgICAgIHZhbHVlPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O+aJuemHj+i9rOaNoiwg6L6T5YWl5b6F6L2s5o2i6Z+z6aKR5paH5Lu25aS5LCDmiJbkuIrkvKDlpJrkuKrpn7PpopHmlofku7YsIOWcqOaMh+WumuaWh+S7tuWkuSjpu5jorqRvcHQp5LiL6L6T5Ye66L2s5o2i55qE6Z+z6aKRLiAmcXVvdDsKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgIHdpdGggZ3IuQ29sdW1uKCk6CiAgICAgICAgICAgICAgICAgICAgICAgIHZjX3RyYW5zZm9ybTEgPSBnci5OdW1iZXIoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+WPmOiwgyjmlbTmlbAsIOWNiumfs+aVsOmHjywg5Y2H5YWr5bqmMTLpmY3lhavluqYtMTIpJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgb3B0X2lucHV0ID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75oyH5a6a6L6T5Ye65paH5Lu25aS5JnF1b3Q7KSwgdmFsdWU9JnF1b3Q7b3B0JnF1b3Q7CiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9pbmRleDMgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvnibnlvoHmo4DntKLlupPmlofku7bot6/lvoQs5Li656m65YiZ5L2/55So5LiL5ouJ55qE6YCJ5oup57uT5p6cJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90OyZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9pbmRleDQgPSBnci5Ecm9wZG93bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q76Ieq5Yqo5qOA5rWLaW5kZXjot6/lvoQs5LiL5ouJ5byP6YCJ5oupKGRyb3Bkb3duKSZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPXNvcnRlZChpbmRleF9wYXRocyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgIGYwbWV0aG9kMSA9IGdyLlJhZGlvKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvpgInmi6npn7Ppq5jmj5Dlj5bnrpfms5Us6L6T5YWl5q2M5aOw5Y+v55SocG3mj5DpgJ8saGFydmVzdOS9jumfs+WlveS9huW3qOaFouaXoOavlCxjcmVwZeaViOaenOWlveS9huWQg0dQVSxybXZwZeaViOaenOacgOWlveS4lOW+ruWQg0dQVSZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNob2ljZXM9KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsmcXVvdDtwbSZxdW90OywgJnF1b3Q7aGFydmVzdCZxdW90OywgJnF1b3Q7Y3JlcGUmcXVvdDssICZxdW90O3JtdnBlJnF1b3Q7XQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmIGNvbmZpZy5kbWwgPT0gRmFsc2UKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlbHNlIFsmcXVvdDtwbSZxdW90OywgJnF1b3Q7aGFydmVzdCZxdW90OywgJnF1b3Q7cm12cGUmcXVvdDtdCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7cm12cGUmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgIGZvcm1hdDEgPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75a+85Ye65paH5Lu25qC85byPJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNob2ljZXM9WyZxdW90O3dhdiZxdW90OywgJnF1b3Q7ZmxhYyZxdW90OywgJnF1b3Q7bXAzJnF1b3Q7LCAmcXVvdDttNGEmcXVvdDtdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7d2F2JnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgKQoKICAgICAgICAgICAgICAgICAgICAgICAgcmVmcmVzaF9idXR0b24uY2xpY2soCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmbj1sYW1iZGE6IGNoYW5nZV9jaG9pY2VzKClbMV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnB1dHM9W10sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBvdXRwdXRzPWZpbGVfaW5kZXg0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgYXBpX25hbWU9JnF1b3Q7aW5mZXJfcmVmcmVzaF9iYXRjaCZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICAjIGZpbGVfYmlnX25weTIgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICAjICAgICBsYWJlbD1pMThuKCZxdW90O+eJueW+geaWh+S7tui3r+W+hCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICMgICAgIHZhbHVlPSZxdW90O0U6XFxjb2Rlc1xccHkzOVxcdml0c192Y19ncHVfdHJhaW5cXGxvZ3NcXG1pLXRlc3QtMWtleVxcdG90YWxfZmVhLm5weSZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgIyAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgIyApCgogICAgICAgICAgICAgICAgICAgIHdpdGggZ3IuQ29sdW1uKCk6CiAgICAgICAgICAgICAgICAgICAgICAgIHJlc2FtcGxlX3NyMSA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGltdW09NDgwMDAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+WQjuWkhOeQhumHjemHh+agt+iHs+acgOe7iOmHh+agt+eOh++8jDDkuLrkuI3ov5vooYzph43ph4fmoLcmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0ZXA9MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgcm1zX21peF9yYXRlMSA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGltdW09MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q76L6T5YWl5rqQ6Z+z6YeP5YyF57uc5pu/5o2i6L6T5Ye66Z+z6YeP5YyF57uc6J6N5ZCI5q+U5L6L77yM6LaK6Z2g6L+RMei2iuS9v+eUqOi+k+WHuuWMhee7nCZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgIHByb3RlY3QxID0gZ3IuU2xpZGVyKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbWluaW11bT0wLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT0wLjUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O+S/neaKpOa4hei+hemfs+WSjOWRvOWQuOWjsO+8jOmYsuatoueUtemfs+aSleijguetiWFydGlmYWN077yM5ouJ5ruhMC415LiN5byA5ZCv77yM6LCD5L2O5Yqg5aSn5L+d5oqk5Yqb5bqm5L2G5Y+v6IO96ZmN5L2O57Si5byV5pWI5p6cJnF1b3Q7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MC4zMywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0ZXA9MC4wMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyX3JhZGl1czEgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhpbXVtPTcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90OyZndDs9M+WImeS9v+eUqOWvuWhhcnZlc3Tpn7Ppq5jor4bliKvnmoTnu5Pmnpzkvb/nlKjkuK3lgLzmu6Tms6LvvIzmlbDlgLzkuLrmu6Tms6LljYrlvoTvvIzkvb/nlKjlj6/ku6XliYrlvLHlk5Hpn7MmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0xLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICBpbmRleF9yYXRlMiA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGltdW09MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qOA57Si54m55b6B5Y2g5q+UJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgIGRpcl9pbnB1dCA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvovpPlhaXlvoXlpITnkIbpn7PpopHmlofku7blpLnot6/lvoQo5Y675paH5Lu2566h55CG5Zmo5Zyw5Z2A5qCP5ou35bCx6KGM5LqGKSZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICBwbGFjZWhvbGRlcj0mcXVvdDtDOlxcVXNlcnNcXERlc2t0b3BcXGlucHV0X3ZvY2FsX2RpciZxdW90OywKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaW5wdXRzID0gZ3IuRmlsZSgKICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9jb3VudD0mcXVvdDttdWx0aXBsZSZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvkuZ/lj6/mibnph4/ovpPlhaXpn7PpopHmlofku7YsIOS6jOmAieS4gCwg5LyY5YWI6K+75paH5Lu25aS5JnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICApCgogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBidXQxID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q76L2s5o2iJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIHZjX291dHB1dDMgPSBnci5UZXh0Ym94KGxhYmVsPWkxOG4oJnF1b3Q76L6T5Ye65L+h5oGvJnF1b3Q7KSkKCiAgICAgICAgICAgICAgICAgICAgYnV0MS5jbGljaygKICAgICAgICAgICAgICAgICAgICAgICAgdmMudmNfbXVsdGksCiAgICAgICAgICAgICAgICAgICAgICAgIFsKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwa19pdGVtLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlyX2lucHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3B0X2lucHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaW5wdXRzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmNfdHJhbnNmb3JtMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGYwbWV0aG9kMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbGVfaW5kZXgzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9pbmRleDQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGZpbGVfYmlnX25weTIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRleF9yYXRlMiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcl9yYWRpdXMxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVzYW1wbGVfc3IxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcm1zX21peF9yYXRlMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHByb3RlY3QxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0MSwKICAgICAgICAgICAgICAgICAgICAgICAgXSwKICAgICAgICAgICAgICAgICAgICAgICAgW3ZjX291dHB1dDNdLAogICAgICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDtpbmZlcl9jb252ZXJ0X2JhdGNoJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHNpZDAuY2hhbmdlKAogICAgICAgICAgICAgICAgICAgIGZuPXZjLmdldF92YywKICAgICAgICAgICAgICAgICAgICBpbnB1dHM9W3NpZDAsIHByb3RlY3QwLCBwcm90ZWN0MV0sCiAgICAgICAgICAgICAgICAgICAgb3V0cHV0cz1bc3BrX2l0ZW0sIHByb3RlY3QwLCBwcm90ZWN0MSwgZmlsZV9pbmRleDIsIGZpbGVfaW5kZXg0XSwKICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDtpbmZlcl9jaGFuZ2Vfdm9pY2UmcXVvdDssCiAgICAgICAgICAgICAgICApCiAgICAgICAgd2l0aCBnci5UYWJJdGVtKGkxOG4oJnF1b3Q75Ly05aWP5Lq65aOw5YiG56a7JmFtcDvljrvmt7flk40mYW1wO+WOu+WbnuWjsCZxdW90OykpOgogICAgICAgICAgICB3aXRoIGdyLkdyb3VwKCk6CiAgICAgICAgICAgICAgICBnci5NYXJrZG93bigKICAgICAgICAgICAgICAgICAgICB2YWx1ZT1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvkurrlo7DkvLTlpY/liIbnprvmibnph4/lpITnkIbvvIwg5L2/55SoVVZSNeaooeWei+OAgiAmbHQ7YnImZ3Q75ZCI5qC855qE5paH5Lu25aS56Lev5b6E5qC85byP5Li+5L6L77yaIEU6XFxjb2Rlc1xccHkzOVxcdml0c192Y19ncHVcXOeZvem5remcnOWNjua1i+ivleagt+S+iyjljrvmlofku7bnrqHnkIblmajlnLDlnYDmoI/mi7flsLHooYzkuoYp44CCICZsdDticiZndDvmqKHlnovliIbkuLrkuInnsbvvvJogJmx0O2JyJmd0OzHjgIHkv53nlZnkurrlo7DvvJrkuI3luKblkozlo7DnmoTpn7PpopHpgInov5nkuKrvvIzlr7nkuLvkurrlo7Dkv53nlZnmr5RIUDXmm7Tlpb3jgILlhoXnva5IUDLlkoxIUDPkuKTkuKrmqKHlnovvvIxIUDPlj6/og73ovbvlvq7mvI/kvLTlpY/kvYblr7nkuLvkurrlo7Dkv53nlZnmr5RIUDLnqI3lvq7lpb3kuIDkuIHngrnvvJsgJmx0O2JyJmd0OzLjgIHku4Xkv53nlZnkuLvkurrlo7DvvJrluKblkozlo7DnmoTpn7PpopHpgInov5nkuKrvvIzlr7nkuLvkurrlo7Dlj6/og73mnInliYrlvLHjgILlhoXnva5IUDXkuIDkuKrmqKHlnovvvJsgJmx0O2JyJmd0OyAz44CB5Y675re35ZON44CB5Y675bu26L+f5qih5Z6L77yIYnkgRm94Sm9577yJ77yaJmx0O2JyJmd0OyZlbXNwOyZlbXNwOygxKU1EWC1OZXQob25ueF9kZXJldmVyYik65a+55LqO5Y+M6YCa6YGT5re35ZON5piv5pyA5aW955qE6YCJ5oup77yM5LiN6IO95Y676Zmk5Y2V6YCa6YGT5re35ZON77ybJmx0O2JyJmd0OyZhbXA7ZW1zcDsoMjM0KURlRWNobzrljrvpmaTlu7bov5/mlYjmnpzjgIJBZ2dyZXNzaXZl5q+UTm9ybWFs5Y676Zmk5b6X5pu05b275bqV77yMRGVSZXZlcmLpop3lpJbljrvpmaTmt7flk43vvIzlj6/ljrvpmaTljZXlo7DpgZPmt7flk43vvIzkvYbmmK/lr7npq5jpopHph43nmoTmnb/lvI/mt7flk43ljrvkuI3lubLlh4DjgIImbHQ7YnImZ3Q75Y675re35ZONL+WOu+W7tui/n++8jOmZhO+8miZsdDticiZndDsx44CBRGVFY2hvLURlUmV2ZXJi5qih5Z6L55qE6ICX5pe25piv5Y+m5aSWMuS4qkRlRWNob+aooeWei+eahOaOpei/kTLlgI3vvJsmbHQ7YnImZ3Q7MuOAgU1EWC1OZXQtRGVyZXZlcmLmqKHlnovmjLrmhaLnmoTvvJsmbHQ7YnImZ3Q7M+OAgeS4quS6uuaOqOiNkOeahOacgOW5suWHgOeahOmFjee9ruaYr+WFiE1EWC1OZXTlho1EZUVjaG8tQWdncmVzc2l2ZeOAgiZxdW90OwogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICAgICAgd2l0aCBnci5Db2x1bW4oKToKICAgICAgICAgICAgICAgICAgICAgICAgZGlyX3dhdl9pbnB1dCA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+i+k+WFpeW+heWkhOeQhumfs+mikeaWh+S7tuWkuei3r+W+hCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwbGFjZWhvbGRlcj0mcXVvdDtDOlxcVXNlcnNcXERlc2t0b3BcXHRvZG8tc29uZ3MmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgd2F2X2lucHV0cyA9IGdyLkZpbGUoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2NvdW50PSZxdW90O211bHRpcGxlJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvkuZ/lj6/mibnph4/ovpPlhaXpn7PpopHmlofku7YsIOS6jOmAieS4gCwg5LyY5YWI6K+75paH5Lu25aS5JnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHdpdGggZ3IuQ29sdW1uKCk6CiAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2Nob29zZSA9IGdyLkRyb3Bkb3duKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvmqKHlnosmcXVvdDspLCBjaG9pY2VzPXV2cjVfbmFtZXMKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICBhZ2cgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhpbXVtPTIwLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0xLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9JnF1b3Q75Lq65aOw5o+Q5Y+W5r+A6L+b56iL5bqmJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmlzaWJsZT1GYWxzZSwgICMg5YWI5LiN5byA5pS+6LCD5pW0CiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgb3B0X3ZvY2FsX3Jvb3QgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvmjIflrprovpPlh7rkuLvkurrlo7Dmlofku7blpLkmcXVvdDspLCB2YWx1ZT0mcXVvdDtvcHQmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICBvcHRfaW5zX3Jvb3QgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvmjIflrprovpPlh7rpnZ7kuLvkurrlo7Dmlofku7blpLkmcXVvdDspLCB2YWx1ZT0mcXVvdDtvcHQmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICBmb3JtYXQwID0gZ3IuUmFkaW8oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+WvvOWHuuaWh+S7tuagvOW8jyZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVsmcXVvdDt3YXYmcXVvdDssICZxdW90O2ZsYWMmcXVvdDssICZxdW90O21wMyZxdW90OywgJnF1b3Q7bTRhJnF1b3Q7XSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O2ZsYWMmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgYnV0MiA9IGdyLkJ1dHRvbihpMThuKCZxdW90O+i9rOaNoiZxdW90OyksIHZhcmlhbnQ9JnF1b3Q7cHJpbWFyeSZxdW90OykKICAgICAgICAgICAgICAgICAgICB2Y19vdXRwdXQ0ID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WHuuS/oeaBryZxdW90OykpCiAgICAgICAgICAgICAgICAgICAgYnV0Mi5jbGljaygKICAgICAgICAgICAgICAgICAgICAgICAgdXZyLAogICAgICAgICAgICAgICAgICAgICAgICBbCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9jaG9vc2UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaXJfd2F2X2lucHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3B0X3ZvY2FsX3Jvb3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB3YXZfaW5wdXRzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3B0X2luc19yb290LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgYWdnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0MCwKICAgICAgICAgICAgICAgICAgICAgICAgXSwKICAgICAgICAgICAgICAgICAgICAgICAgW3ZjX291dHB1dDRdLAogICAgICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDt1dnJfY29udmVydCZxdW90OywKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgd2l0aCBnci5UYWJJdGVtKGkxOG4oJnF1b3Q76K6t57uDJnF1b3Q7KSk6CiAgICAgICAgICAgIGdyLk1hcmtkb3duKAogICAgICAgICAgICAgICAgdmFsdWU9aTE4bigKICAgICAgICAgICAgICAgICAgICAmcXVvdDtzdGVwMTog5aGr5YaZ5a6e6aqM6YWN572uLiDlrp7pqozmlbDmja7mlL7lnKhsb2dz5LiLLCDmr4/kuKrlrp7pqozkuIDkuKrmlofku7blpLksIOmcgOaJi+W3pei+k+WFpeWunumqjOWQjei3r+W+hCwg5YaF5ZCr5a6e6aqM6YWN572uLCDml6Xlv5csIOiuree7g+W+l+WIsOeahOaooeWei+aWh+S7ti4gJnF1b3Q7CiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICkKICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgIGV4cF9kaXIxID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WFpeWunumqjOWQjSZxdW90OyksIHZhbHVlPSZxdW90O21pLXRlc3QmcXVvdDspCiAgICAgICAgICAgICAgICBzcjIgPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+ebruagh+mHh+agt+eOhyZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1bJnF1b3Q7NDBrJnF1b3Q7LCAmcXVvdDs0OGsmcXVvdDtdLAogICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90OzQwayZxdW90OywKICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgaWZfZjBfMyA9IGdyLlJhZGlvKAogICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qih5Z6L5piv5ZCm5bim6Z+z6auY5oyH5a+8KOWUseatjOS4gOWumuimgSwg6K+t6Z+z5Y+v5Lul5LiN6KaBKSZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1bVHJ1ZSwgRmFsc2VdLAogICAgICAgICAgICAgICAgICAgIHZhbHVlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHZlcnNpb24xOSA9IGdyLlJhZGlvKAogICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q754mI5pysJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVsmcXVvdDt2MSZxdW90OywgJnF1b3Q7djImcXVvdDtdLAogICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O3YyJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgdmlzaWJsZT1UcnVlLAogICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgbnA3ID0gZ3IuU2xpZGVyKAogICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICBtYXhpbXVtPWNvbmZpZy5uX2NwdSwKICAgICAgICAgICAgICAgICAgICBzdGVwPTEsCiAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvmj5Dlj5bpn7Ppq5jlkozlpITnkIbmlbDmja7kvb/nlKjnmoRDUFXov5vnqIvmlbAmcXVvdDspLAogICAgICAgICAgICAgICAgICAgIHZhbHVlPWludChucC5jZWlsKGNvbmZpZy5uX2NwdSAvIDEuNSkpLAogICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgIHdpdGggZ3IuR3JvdXAoKTogICMg5pqC5pe25Y2V5Lq655qELCDlkI7pnaLmlK/mjIHmnIDlpJo05Lq655qEI+aVsOaNruWkhOeQhgogICAgICAgICAgICAgICAgZ3IuTWFya2Rvd24oCiAgICAgICAgICAgICAgICAgICAgdmFsdWU9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q7c3RlcDJhOiDoh6rliqjpgY3ljoborq3nu4Pmlofku7blpLnkuIvmiYDmnInlj6/op6PnoIHmiJDpn7PpopHnmoTmlofku7blubbov5vooYzliIfniYflvZLkuIDljJYsIOWcqOWunumqjOebruW9leS4i+eUn+aIkDLkuKp3YXbmlofku7blpLk7IOaaguaXtuWPquaUr+aMgeWNleS6uuiuree7gy4gJnF1b3Q7CiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICB0cmFpbnNldF9kaXI0ID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvovpPlhaXorq3nu4Pmlofku7blpLnot6/lvoQmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT1pMThuKCZxdW90O0U6XFzor63pn7Ppn7PpopEr5qCH5rOoXFznsbPmtKXnjoTluIhcXHNyYyZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHNwa19pZDUgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT00LAogICAgICAgICAgICAgICAgICAgICAgICBzdGVwPTEsCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q76K+35oyH5a6a6K+06K+d5Lq6aWQmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0wLAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBidXQxID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q75aSE55CG5pWw5o2uJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIGluZm8xID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WHuuS/oeaBryZxdW90OyksIHZhbHVlPSZxdW90OyZxdW90OykKICAgICAgICAgICAgICAgICAgICBidXQxLmNsaWNrKAogICAgICAgICAgICAgICAgICAgICAgICBwcmVwcm9jZXNzX2RhdGFzZXQsCiAgICAgICAgICAgICAgICAgICAgICAgIFt0cmFpbnNldF9kaXI0LCBleHBfZGlyMSwgc3IyLCBucDddLAogICAgICAgICAgICAgICAgICAgICAgICBbaW5mbzFdLAogICAgICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDt0cmFpbl9wcmVwcm9jZXNzJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgd2l0aCBnci5Hcm91cCgpOgogICAgICAgICAgICAgICAgZ3IuTWFya2Rvd24oCiAgICAgICAgICAgICAgICAgICAgdmFsdWU9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q7c3RlcDJiOiDkvb/nlKhDUFXmj5Dlj5bpn7Ppq5go5aaC5p6c5qih5Z6L5bim6Z+z6auYKSwg5L2/55SoR1BV5o+Q5Y+W54m55b6BKOmAieaLqeWNoeWPtykmcXVvdDsKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgIHdpdGggZ3IuQ29sdW1uKCk6CiAgICAgICAgICAgICAgICAgICAgICAgIGdwdXM2ID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJnF1b3Q75LulLeWIhumalOi+k+WFpeS9v+eUqOeahOWNoeWPtywg5L6L5aaCICAgMC0xLTIgICDkvb/nlKjljaEw5ZKM5Y2hMeWSjOWNoTImcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT1ncHVzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZpc2libGU9RjBHUFVWaXNpYmxlLAogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgIGdwdV9pbmZvOSA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+aYvuWNoeS/oeaBryZxdW90OyksIHZhbHVlPWdwdV9pbmZvLCB2aXNpYmxlPUYwR1BVVmlzaWJsZQogICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgd2l0aCBnci5Db2x1bW4oKToKICAgICAgICAgICAgICAgICAgICAgICAgZjBtZXRob2Q4ID0gZ3IuUmFkaW8oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O+mAieaLqemfs+mrmOaPkOWPlueul+azlTrovpPlhaXmrYzlo7Dlj6/nlKhwbeaPkOmAnyzpq5jotKjph4/or63pn7PkvYZDUFXlt67lj6/nlKhkaW/mj5DpgJ8saGFydmVzdOi0qOmHj+abtOWlveS9huaFoixybXZwZeaViOaenOacgOWlveS4lOW+ruWQg0NQVS9HUFUmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVsmcXVvdDtwbSZxdW90OywgJnF1b3Q7aGFydmVzdCZxdW90OywgJnF1b3Q7ZGlvJnF1b3Q7LCAmcXVvdDtybXZwZSZxdW90OywgJnF1b3Q7cm12cGVfZ3B1JnF1b3Q7XSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O3JtdnBlX2dwdSZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgZ3B1c19ybXZwZSA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O3JtdnBl5Y2h5Y+36YWN572u77ya5LulLeWIhumalOi+k+WFpeS9v+eUqOeahOS4jeWQjOi/m+eoi+WNoeWPtyzkvovlpoIwLTAtMeS9v+eUqOWcqOWNoTDkuIrot5Ey5Liq6L+b56iL5bm25Zyo5Y2hMeS4iui3kTHkuKrov5vnqIsmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0mcXVvdDslcy0lcyZxdW90OyAlIChncHVzLCBncHVzKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB2aXNpYmxlPUYwR1BVVmlzaWJsZSwKICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGJ1dDIgPSBnci5CdXR0b24oaTE4bigmcXVvdDvnibnlvoHmj5Dlj5YmcXVvdDspLCB2YXJpYW50PSZxdW90O3ByaW1hcnkmcXVvdDspCiAgICAgICAgICAgICAgICAgICAgaW5mbzIgPSBnci5UZXh0Ym94KGxhYmVsPWkxOG4oJnF1b3Q76L6T5Ye65L+h5oGvJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBtYXhfbGluZXM9OCkKICAgICAgICAgICAgICAgICAgICBmMG1ldGhvZDguY2hhbmdlKAogICAgICAgICAgICAgICAgICAgICAgICBmbj1jaGFuZ2VfZjBfbWV0aG9kLAogICAgICAgICAgICAgICAgICAgICAgICBpbnB1dHM9W2YwbWV0aG9kOF0sCiAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dHM9W2dwdXNfcm12cGVdLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBidXQyLmNsaWNrKAogICAgICAgICAgICAgICAgICAgICAgICBleHRyYWN0X2YwX2ZlYXR1cmUsCiAgICAgICAgICAgICAgICAgICAgICAgIFsKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdwdXM2LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbnA3LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZjBtZXRob2Q4LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZfZjBfMywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4cF9kaXIxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVyc2lvbjE5LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3B1c19ybXZwZSwKICAgICAgICAgICAgICAgICAgICAgICAgXSwKICAgICAgICAgICAgICAgICAgICAgICAgW2luZm8yXSwKICAgICAgICAgICAgICAgICAgICAgICAgYXBpX25hbWU9JnF1b3Q7dHJhaW5fZXh0cmFjdF9mMF9mZWF0dXJlJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgd2l0aCBnci5Hcm91cCgpOgogICAgICAgICAgICAgICAgZ3IuTWFya2Rvd24odmFsdWU9aTE4bigmcXVvdDtzdGVwMzog5aGr5YaZ6K6t57uD6K6+572uLCDlvIDlp4vorq3nu4PmqKHlnovlkozntKLlvJUmcXVvdDspKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBzYXZlX2Vwb2NoMTAgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MSwKICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT01MCwKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0xLAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+S/neWtmOmikeeOh3NhdmVfZXZlcnlfZXBvY2gmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT01LAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICB0b3RhbF9lcG9jaDExID0gZ3IuU2xpZGVyKAogICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtPTIsCiAgICAgICAgICAgICAgICAgICAgICAgIG1heGltdW09MTAwMCwKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcD0xLAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+aAu+iuree7g+i9ruaVsHRvdGFsX2Vwb2NoJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9MjAsCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGJhdGNoX3NpemUxMiA9IGdyLlNsaWRlcigKICAgICAgICAgICAgICAgICAgICAgICAgbWluaW11bT0xLAogICAgICAgICAgICAgICAgICAgICAgICBtYXhpbXVtPTQwLAogICAgICAgICAgICAgICAgICAgICAgICBzdGVwPTEsCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75q+P5byg5pi+5Y2h55qEYmF0Y2hfc2l6ZSZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPWRlZmF1bHRfYmF0Y2hfc2l6ZSwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaWZfc2F2ZV9sYXRlc3QxMyA9IGdyLlJhZGlvKAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+aYr+WQpuS7heS/neWtmOacgOaWsOeahGNrcHTmlofku7bku6XoioLnnIHnoaznm5jnqbrpl7QmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVtpMThuKCZxdW90O+aYryZxdW90OyksIGkxOG4oJnF1b3Q75ZCmJnF1b3Q7KV0sCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPWkxOG4oJnF1b3Q75ZCmJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaWZfY2FjaGVfZ3B1MTcgPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O+aYr+WQpue8k+WtmOaJgOacieiuree7g+mbhuiHs+aYvuWtmC4gMTBtaW7ku6XkuIvlsI/mlbDmja7lj6/nvJPlrZjku6XliqDpgJ/orq3nu4MsIOWkp+aVsOaNrue8k+WtmOS8mueCuOaYvuWtmOS5n+WKoOS4jeS6huWkmuWwkemAnyZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVtpMThuKCZxdW90O+aYryZxdW90OyksIGkxOG4oJnF1b3Q75ZCmJnF1b3Q7KV0sCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPWkxOG4oJnF1b3Q75ZCmJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaWZfc2F2ZV9ldmVyeV93ZWlnaHRzMTggPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigKICAgICAgICAgICAgICAgICAgICAgICAgICAgICZxdW90O+aYr+WQpuWcqOavj+asoeS/neWtmOaXtumXtOeCueWwhuacgOe7iOWwj+aooeWei+S/neWtmOiHs3dlaWdodHPmlofku7blpLkmcXVvdDsKICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1baTE4bigmcXVvdDvmmK8mcXVvdDspLCBpMThuKCZxdW90O+WQpiZxdW90OyldLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT1pMThuKCZxdW90O+WQpiZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBwcmV0cmFpbmVkX0cxNCA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75Yqg6L296aKE6K6t57uD5bqV5qihR+i3r+W+hCZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O2Fzc2V0cy9wcmV0cmFpbmVkX3YyL2YwRzQway5wdGgmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHByZXRyYWluZWRfRDE1ID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvliqDovb3pooTorq3nu4PlupXmqKFE6Lev5b6EJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7YXNzZXRzL3ByZXRyYWluZWRfdjIvZjBENDBrLnB0aCZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgc3IyLmNoYW5nZSgKICAgICAgICAgICAgICAgICAgICAgICAgY2hhbmdlX3NyMiwKICAgICAgICAgICAgICAgICAgICAgICAgW3NyMiwgaWZfZjBfMywgdmVyc2lvbjE5XSwKICAgICAgICAgICAgICAgICAgICAgICAgW3ByZXRyYWluZWRfRzE0LCBwcmV0cmFpbmVkX0QxNV0sCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHZlcnNpb24xOS5jaGFuZ2UoCiAgICAgICAgICAgICAgICAgICAgICAgIGNoYW5nZV92ZXJzaW9uMTksCiAgICAgICAgICAgICAgICAgICAgICAgIFtzcjIsIGlmX2YwXzMsIHZlcnNpb24xOV0sCiAgICAgICAgICAgICAgICAgICAgICAgIFtwcmV0cmFpbmVkX0cxNCwgcHJldHJhaW5lZF9EMTUsIHNyMl0sCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGlmX2YwXzMuY2hhbmdlKAogICAgICAgICAgICAgICAgICAgICAgICBjaGFuZ2VfZjAsCiAgICAgICAgICAgICAgICAgICAgICAgIFtpZl9mMF8zLCBzcjIsIHZlcnNpb24xOV0sCiAgICAgICAgICAgICAgICAgICAgICAgIFtmMG1ldGhvZDgsIGdwdXNfcm12cGUsIHByZXRyYWluZWRfRzE0LCBwcmV0cmFpbmVkX0QxNV0sCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGdwdXMxNiA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvku6Ut5YiG6ZqU6L6T5YWl5L2/55So55qE5Y2h5Y+3LCDkvovlpoIgICAwLTEtMiAgIOS9v+eUqOWNoTDlkozljaEx5ZKM5Y2hMiZxdW90OwogICAgICAgICAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT1ncHVzLAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBidXQzID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q76K6t57uD5qih5Z6LJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIGJ1dDQgPSBnci5CdXR0b24oaTE4bigmcXVvdDvorq3nu4PnibnlvoHntKLlvJUmcXVvdDspLCB2YXJpYW50PSZxdW90O3ByaW1hcnkmcXVvdDspCiAgICAgICAgICAgICAgICAgICAgYnV0NSA9IGdyLkJ1dHRvbihpMThuKCZxdW90O+S4gOmUruiuree7gyZxdW90OyksIHZhcmlhbnQ9JnF1b3Q7cHJpbWFyeSZxdW90OykKICAgICAgICAgICAgICAgICAgICBpbmZvMyA9IGdyLlRleHRib3gobGFiZWw9aTE4bigmcXVvdDvovpPlh7rkv6Hmga8mcXVvdDspLCB2YWx1ZT0mcXVvdDsmcXVvdDssIG1heF9saW5lcz0xMCkKICAgICAgICAgICAgICAgICAgICBidXQzLmNsaWNrKAogICAgICAgICAgICAgICAgICAgICAgICBjbGlja190cmFpbiwKICAgICAgICAgICAgICAgICAgICAgICAgWwogICAgICAgICAgICAgICAgICAgICAgICAgICAgZXhwX2RpcjEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzcjIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZl9mMF8zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgc3BrX2lkNSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhdmVfZXBvY2gxMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvdGFsX2Vwb2NoMTEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaF9zaXplMTIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZl9zYXZlX2xhdGVzdDEzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJldHJhaW5lZF9HMTQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwcmV0cmFpbmVkX0QxNSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdwdXMxNiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmX2NhY2hlX2dwdTE3LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZfc2F2ZV9ldmVyeV93ZWlnaHRzMTgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB2ZXJzaW9uMTksCiAgICAgICAgICAgICAgICAgICAgICAgIF0sCiAgICAgICAgICAgICAgICAgICAgICAgIGluZm8zLAogICAgICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDt0cmFpbl9zdGFydCZxdW90OywKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgYnV0NC5jbGljayh0cmFpbl9pbmRleCwgW2V4cF9kaXIxLCB2ZXJzaW9uMTldLCBpbmZvMykKICAgICAgICAgICAgICAgICAgICBidXQ1LmNsaWNrKAogICAgICAgICAgICAgICAgICAgICAgICB0cmFpbjFrZXksCiAgICAgICAgICAgICAgICAgICAgICAgIFsKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4cF9kaXIxLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgc3IyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZfZjBfMywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyYWluc2V0X2RpcjQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzcGtfaWQ1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbnA3LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZjBtZXRob2Q4LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2F2ZV9lcG9jaDEwLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdG90YWxfZXBvY2gxMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoX3NpemUxMiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmX3NhdmVfbGF0ZXN0MTMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwcmV0cmFpbmVkX0cxNCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHByZXRyYWluZWRfRDE1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3B1czE2LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZfY2FjaGVfZ3B1MTcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZl9zYXZlX2V2ZXJ5X3dlaWdodHMxOCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcnNpb24xOSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdwdXNfcm12cGUsCiAgICAgICAgICAgICAgICAgICAgICAgIF0sCiAgICAgICAgICAgICAgICAgICAgICAgIGluZm8zLAogICAgICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDt0cmFpbl9zdGFydF9hbGwmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgKQoKICAgICAgICB3aXRoIGdyLlRhYkl0ZW0oaTE4bigmcXVvdDtja3B05aSE55CGJnF1b3Q7KSk6CiAgICAgICAgICAgIHdpdGggZ3IuR3JvdXAoKToKICAgICAgICAgICAgICAgIGdyLk1hcmtkb3duKHZhbHVlPWkxOG4oJnF1b3Q75qih5Z6L6J6N5ZCILCDlj6/nlKjkuo7mtYvor5Xpn7PoibLono3lkIgmcXVvdDspKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBja3B0X2EgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O0HmqKHlnovot6/lvoQmcXVvdDspLCB2YWx1ZT0mcXVvdDsmcXVvdDssIGludGVyYWN0aXZlPVRydWUKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgY2twdF9iID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDtC5qih5Z6L6Lev5b6EJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBpbnRlcmFjdGl2ZT1UcnVlCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGFscGhhX2EgPSBnci5TbGlkZXIoCiAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW09MCwKICAgICAgICAgICAgICAgICAgICAgICAgbWF4aW11bT0xLAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O0HmqKHlnovmnYPph40mcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0wLjUsCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBzcl8gPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvnm67moIfph4fmoLfnjocmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVsmcXVvdDs0MGsmcXVvdDssICZxdW90OzQ4ayZxdW90O10sCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90OzQwayZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaWZfZjBfID0gZ3IuUmFkaW8oCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qih5Z6L5piv5ZCm5bim6Z+z6auY5oyH5a+8JnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1baTE4bigmcXVvdDvmmK8mcXVvdDspLCBpMThuKCZxdW90O+WQpiZxdW90OyldLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT1pMThuKCZxdW90O+aYryZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGluZm9fXyA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q76KaB572u5YWl55qE5qih5Z6L5L+h5oGvJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICBtYXhfbGluZXM9OCwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgbmFtZV90b19zYXZlMCA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75L+d5a2Y55qE5qih5Z6L5ZCN5LiN5bim5ZCO57yAJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICBtYXhfbGluZXM9MSwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgdmVyc2lvbl8yID0gZ3IuUmFkaW8oCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qih5Z6L54mI5pys5Z6L5Y+3JnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1bJnF1b3Q7djEmcXVvdDssICZxdW90O3YyJnF1b3Q7XSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7djEmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBidXQ2ID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q76J6N5ZCIJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIGluZm80ID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WHuuS/oeaBryZxdW90OyksIHZhbHVlPSZxdW90OyZxdW90OywgbWF4X2xpbmVzPTgpCiAgICAgICAgICAgICAgICBidXQ2LmNsaWNrKAogICAgICAgICAgICAgICAgICAgIG1lcmdlLAogICAgICAgICAgICAgICAgICAgIFsKICAgICAgICAgICAgICAgICAgICAgICAgY2twdF9hLAogICAgICAgICAgICAgICAgICAgICAgICBja3B0X2IsCiAgICAgICAgICAgICAgICAgICAgICAgIGFscGhhX2EsCiAgICAgICAgICAgICAgICAgICAgICAgIHNyXywKICAgICAgICAgICAgICAgICAgICAgICAgaWZfZjBfLAogICAgICAgICAgICAgICAgICAgICAgICBpbmZvX18sCiAgICAgICAgICAgICAgICAgICAgICAgIG5hbWVfdG9fc2F2ZTAsCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnNpb25fMiwKICAgICAgICAgICAgICAgICAgICBdLAogICAgICAgICAgICAgICAgICAgIGluZm80LAogICAgICAgICAgICAgICAgICAgIGFwaV9uYW1lPSZxdW90O2NrcHRfbWVyZ2UmcXVvdDssCiAgICAgICAgICAgICAgICApICAjIGRlZiBtZXJnZShwYXRoMSxwYXRoMixhbHBoYTEsc3IsZjAsaW5mbyk6CiAgICAgICAgICAgIHdpdGggZ3IuR3JvdXAoKToKICAgICAgICAgICAgICAgIGdyLk1hcmtkb3duKAogICAgICAgICAgICAgICAgICAgIHZhbHVlPWkxOG4oJnF1b3Q75L+u5pS55qih5Z6L5L+h5oGvKOS7heaUr+aMgXdlaWdodHPmlofku7blpLnkuIvmj5Dlj5bnmoTlsI/mqKHlnovmlofku7YpJnF1b3Q7KQogICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgd2l0aCBnci5Sb3coKToKICAgICAgICAgICAgICAgICAgICBja3B0X3BhdGgwID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvmqKHlnovot6/lvoQmcXVvdDspLCB2YWx1ZT0mcXVvdDsmcXVvdDssIGludGVyYWN0aXZlPVRydWUKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgaW5mb18gPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+imgeaUueeahOaooeWei+S/oeaBryZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90OyZxdW90OywKICAgICAgICAgICAgICAgICAgICAgICAgbWF4X2xpbmVzPTgsCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIG5hbWVfdG9fc2F2ZTEgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+S/neWtmOeahOaWh+S7tuWQjSwg6buY6K6k56m65Li65ZKM5rqQ5paH5Lu25ZCM5ZCNJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7JnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICBtYXhfbGluZXM9OCwKICAgICAgICAgICAgICAgICAgICAgICAgaW50ZXJhY3RpdmU9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgIGJ1dDcgPSBnci5CdXR0b24oaTE4bigmcXVvdDvkv67mlLkmcXVvdDspLCB2YXJpYW50PSZxdW90O3ByaW1hcnkmcXVvdDspCiAgICAgICAgICAgICAgICAgICAgaW5mbzUgPSBnci5UZXh0Ym94KGxhYmVsPWkxOG4oJnF1b3Q76L6T5Ye65L+h5oGvJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBtYXhfbGluZXM9OCkKICAgICAgICAgICAgICAgIGJ1dDcuY2xpY2soCiAgICAgICAgICAgICAgICAgICAgY2hhbmdlX2luZm8sCiAgICAgICAgICAgICAgICAgICAgW2NrcHRfcGF0aDAsIGluZm9fLCBuYW1lX3RvX3NhdmUxXSwKICAgICAgICAgICAgICAgICAgICBpbmZvNSwKICAgICAgICAgICAgICAgICAgICBhcGlfbmFtZT0mcXVvdDtja3B0X21vZGlmeSZxdW90OywKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgd2l0aCBnci5Hcm91cCgpOgogICAgICAgICAgICAgICAgZ3IuTWFya2Rvd24oCiAgICAgICAgICAgICAgICAgICAgdmFsdWU9aTE4bigmcXVvdDvmn6XnnIvmqKHlnovkv6Hmga8o5LuF5pSv5oyBd2VpZ2h0c+aWh+S7tuWkueS4i+aPkOWPlueahOWwj+aooeWei+aWh+S7tikmcXVvdDspCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgICAgIGNrcHRfcGF0aDEgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+aooeWei+i3r+W+hCZxdW90OyksIHZhbHVlPSZxdW90OyZxdW90OywgaW50ZXJhY3RpdmU9VHJ1ZQogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBidXQ4ID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q75p+l55yLJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIGluZm82ID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WHuuS/oeaBryZxdW90OyksIHZhbHVlPSZxdW90OyZxdW90OywgbWF4X2xpbmVzPTgpCiAgICAgICAgICAgICAgICBidXQ4LmNsaWNrKHNob3dfaW5mbywgW2NrcHRfcGF0aDFdLCBpbmZvNiwgYXBpX25hbWU9JnF1b3Q7Y2twdF9zaG93JnF1b3Q7KQogICAgICAgICAgICB3aXRoIGdyLkdyb3VwKCk6CiAgICAgICAgICAgICAgICBnci5NYXJrZG93bigKICAgICAgICAgICAgICAgICAgICB2YWx1ZT1pMThuKAogICAgICAgICAgICAgICAgICAgICAgICAmcXVvdDvmqKHlnovmj5Dlj5Yo6L6T5YWlbG9nc+aWh+S7tuWkueS4i+Wkp+aWh+S7tuaooeWei+i3r+W+hCks6YCC55So5LqO6K6t5LiA5Y2K5LiN5oOz6K6t5LqG5qih5Z6L5rKh5pyJ6Ieq5Yqo5o+Q5Y+W5L+d5a2Y5bCP5paH5Lu25qih5Z6LLOaIluiAheaDs+a1i+ivleS4remXtOaooeWei+eahOaDheWGtSZxdW90OwogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICAgICAgY2twdF9wYXRoMiA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qih5Z6L6Lev5b6EJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7RTpcXGNvZGVzXFxweTM5XFxsb2dzXFxtaS10ZXN0X2YwXzQ4a1xcR18yMzMzMy5wdGgmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHNhdmVfbmFtZSA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75L+d5a2Y5ZCNJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBpbnRlcmFjdGl2ZT1UcnVlCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHNyX18gPSBnci5SYWRpbygKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvnm67moIfph4fmoLfnjocmcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICBjaG9pY2VzPVsmcXVvdDszMmsmcXVvdDssICZxdW90OzQwayZxdW90OywgJnF1b3Q7NDhrJnF1b3Q7XSwKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWU9JnF1b3Q7NDBrJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBpZl9mMF9fID0gZ3IuUmFkaW8oCiAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q75qih5Z6L5piv5ZCm5bim6Z+z6auY5oyH5a+8LDHmmK8w5ZCmJnF1b3Q7KSwKICAgICAgICAgICAgICAgICAgICAgICAgY2hvaWNlcz1bJnF1b3Q7MSZxdW90OywgJnF1b3Q7MCZxdW90O10sCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90OzEmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgIGludGVyYWN0aXZlPVRydWUsCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIHZlcnNpb25fMSA9IGdyLlJhZGlvKAogICAgICAgICAgICAgICAgICAgICAgICBsYWJlbD1pMThuKCZxdW90O+aooeWei+eJiOacrOWei+WPtyZxdW90OyksCiAgICAgICAgICAgICAgICAgICAgICAgIGNob2ljZXM9WyZxdW90O3YxJnF1b3Q7LCAmcXVvdDt2MiZxdW90O10sCiAgICAgICAgICAgICAgICAgICAgICAgIHZhbHVlPSZxdW90O3YyJnF1b3Q7LAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBpbmZvX19fID0gZ3IuVGV4dGJveCgKICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDvopoHnva7lhaXnmoTmqKHlnovkv6Hmga8mcXVvdDspLAogICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZT0mcXVvdDsmcXVvdDssCiAgICAgICAgICAgICAgICAgICAgICAgIG1heF9saW5lcz04LAogICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdGl2ZT1UcnVlLAogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICBidXQ5ID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q75o+Q5Y+WJnF1b3Q7KSwgdmFyaWFudD0mcXVvdDtwcmltYXJ5JnF1b3Q7KQogICAgICAgICAgICAgICAgICAgIGluZm83ID0gZ3IuVGV4dGJveChsYWJlbD1pMThuKCZxdW90O+i+k+WHuuS/oeaBryZxdW90OyksIHZhbHVlPSZxdW90OyZxdW90OywgbWF4X2xpbmVzPTgpCiAgICAgICAgICAgICAgICAgICAgY2twdF9wYXRoMi5jaGFuZ2UoCiAgICAgICAgICAgICAgICAgICAgICAgIGNoYW5nZV9pbmZvXywgW2NrcHRfcGF0aDJdLCBbc3JfXywgaWZfZjBfXywgdmVyc2lvbl8xXQogICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGJ1dDkuY2xpY2soCiAgICAgICAgICAgICAgICAgICAgZXh0cmFjdF9zbWFsbF9tb2RlbCwKICAgICAgICAgICAgICAgICAgICBbY2twdF9wYXRoMiwgc2F2ZV9uYW1lLCBzcl9fLCBpZl9mMF9fLCBpbmZvX19fLCB2ZXJzaW9uXzFdLAogICAgICAgICAgICAgICAgICAgIGluZm83LAogICAgICAgICAgICAgICAgICAgIGFwaV9uYW1lPSZxdW90O2NrcHRfZXh0cmFjdCZxdW90OywKICAgICAgICAgICAgICAgICkKCiAgICAgICAgd2l0aCBnci5UYWJJdGVtKGkxOG4oJnF1b3Q7T25ueOWvvOWHuiZxdW90OykpOgogICAgICAgICAgICB3aXRoIGdyLlJvdygpOgogICAgICAgICAgICAgICAgY2twdF9kaXIgPSBnci5UZXh0Ym94KAogICAgICAgICAgICAgICAgICAgIGxhYmVsPWkxOG4oJnF1b3Q7UlZD5qih5Z6L6Lev5b6EJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBpbnRlcmFjdGl2ZT1UcnVlCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICBvbm54X2RpciA9IGdyLlRleHRib3goCiAgICAgICAgICAgICAgICAgICAgbGFiZWw9aTE4bigmcXVvdDtPbm546L6T5Ye66Lev5b6EJnF1b3Q7KSwgdmFsdWU9JnF1b3Q7JnF1b3Q7LCBpbnRlcmFjdGl2ZT1UcnVlCiAgICAgICAgICAgICAgICApCiAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICBpbmZvT25ueCA9IGdyLkxhYmVsKGxhYmVsPSZxdW90O2luZm8mcXVvdDspCiAgICAgICAgICAgIHdpdGggZ3IuUm93KCk6CiAgICAgICAgICAgICAgICBidXRPbm54ID0gZ3IuQnV0dG9uKGkxOG4oJnF1b3Q75a+85Ye6T25ueOaooeWeiyZxdW90OyksIHZhcmlhbnQ9JnF1b3Q7cHJpbWFyeSZxdW90OykKICAgICAgICAgICAgYnV0T25ueC5jbGljaygKICAgICAgICAgICAgICAgIGV4cG9ydF9vbm54LCBbY2twdF9kaXIsIG9ubnhfZGlyXSwgaW5mb09ubngsIGFwaV9uYW1lPSZxdW90O2V4cG9ydF9vbm54JnF1b3Q7CiAgICAgICAgICAgICkKCiAgICAgICAgdGFiX2ZhcSA9IGkxOG4oJnF1b3Q75bi46KeB6Zeu6aKY6Kej562UJnF1b3Q7KQogICAgICAgIHdpdGggZ3IuVGFiSXRlbSh0YWJfZmFxKToKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgaWYgdGFiX2ZhcSA9PSAmcXVvdDvluLjop4Hpl67popjop6PnrZQmcXVvdDs6CiAgICAgICAgICAgICAgICAgICAgd2l0aCBvcGVuKCZxdW90O2RvY3MvY24vZmFxLm1kJnF1b3Q7LCAmcXVvdDtyJnF1b3Q7LCBlbmNvZGluZz0mcXVvdDt1dGY4JnF1b3Q7KSBhcyBmOgogICAgICAgICAgICAgICAgICAgICAgICBpbmZvID0gZi5yZWFkKCkKICAgICAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICAgICAgd2l0aCBvcGVuKCZxdW90O2RvY3MvZW4vZmFxX2VuLm1kJnF1b3Q7LCAmcXVvdDtyJnF1b3Q7LCBlbmNvZGluZz0mcXVvdDt1dGY4JnF1b3Q7KSBhcyBmOgogICAgICAgICAgICAgICAgICAgICAgICBpbmZvID0gZi5yZWFkKCkKICAgICAgICAgICAgICAgIGdyLk1hcmtkb3duKHZhbHVlPWluZm8pCiAgICAgICAgICAgIGV4Y2VwdDoKICAgICAgICAgICAgICAgIGdyLk1hcmtkb3duKHRyYWNlYmFjay5mb3JtYXRfZXhjKCkpCgogICAgaWYgY29uZmlnLmlzY29sYWI6CiAgICAgICAgYXBwLnF1ZXVlKGNvbmN1cnJlbmN5X2NvdW50PTUxMSwgbWF4X3NpemU9MTAyMikubGF1bmNoKHNoYXJlPVRydWUpCiAgICBlbHNlOgogICAgICAgIGFwcC5xdWV1ZShjb25jdXJyZW5jeV9jb3VudD01MTEsIG1heF9zaXplPTEwMjIpLmxhdW5jaCgKICAgICAgICAgICAgc2VydmVyX25hbWU9JnF1b3Q7MC4wLjAuMCZxdW90OywKICAgICAgICAgICAgaW5icm93c2VyPW5vdCBjb25maWcubm9hdXRvb3BlbiwKICAgICAgICAgICAgc2VydmVyX3BvcnQ9Y29uZmlnLmxpc3Rlbl9wb3J0LAogICAgICAgICAgICBxdWlldD1UcnVlLAogICAgICAgICkK
45import os
import sys
from dotenv import load_dotenv
now_dir = os.getcwd()
sys.path.append(now_dir)
load_dotenv()
from infer.modules.vc.modules import VC
from infer.modules.uvr5.modules import uvr
from infer.lib.train.process_ckpt import (
change_info,
extract_small_model,
merge,
show_info,
)
from i18n.i18n import I18nAuto
from configs.config import Config
from sklearn.cluster import MiniBatchKMeans
import torch, platform
import numpy as np
import gradio as gr
import faiss
import fairseq
import pathlib
import json
from time import sleep
from subprocess import Popen
from random import shuffle
import warnings
import traceback
import threading
import shutil
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
config = Config()
vc = VC(config)
if config.dml == True:
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
i18n = I18nAuto()
logger.info(i18n)
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if any(
value in gpu_name.upper()
for value in [
"10",
"16",
"20",
"30",
"40",
"A2",
"A3",
"A4",
"P4",
"A50",
"500",
"A60",
"70",
"80",
"90",
"M4",
"T4",
"TITAN",
"4060",
"L",
"6000",
]
):
# A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(
int(
torch.cuda.get_device_properties(i).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
)
if if_gpu_ok and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
weight_root = os.getenv("weight_root")
weight_uvr5_root = os.getenv("weight_uvr5_root")
index_root = os.getenv("index_root")
outside_index_root = os.getenv("outside_index_root")
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
def lookup_indices(index_root):
global index_paths
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
lookup_indices(index_root)
lookup_indices(outside_index_root)
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth") or "onnx" in name:
uvr5_names.append(name.replace(".pth", ""))
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"}, {
"choices": sorted(index_paths),
"__type__": "update",
}
def clean():
return {"value": "", "__type__": "update"}
def export_onnx(ModelPath, ExportedPath):
from infer.modules.onnx.export import export_onnx as eo
eo(ModelPath, ExportedPath)
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while 1:
if p.poll() is None:
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() is None:
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
f.close()
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
config.python_cmd,
trainset_dir,
sr,
n_p,
now_dir,
exp_dir,
config.noparallel,
config.preprocess_per,
)
logger.info("Execute: " + cmd)
# , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
p = Popen(cmd, shell=True)
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
gpus = gpus.split("-")
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0:
if f0method != "rmvpe_gpu":
cmd = (
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
% (
config.python_cmd,
now_dir,
exp_dir,
n_p,
f0method,
)
)
logger.info("Execute: " + cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
else:
if gpus_rmvpe != "-":
gpus_rmvpe = gpus_rmvpe.split("-")
leng = len(gpus_rmvpe)
ps = []
for idx, n_g in enumerate(gpus_rmvpe):
cmd = (
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
% (
config.python_cmd,
leng,
idx,
n_g,
now_dir,
exp_dir,
config.is_half,
)
)
logger.info("Execute: " + cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi, #
args=(
done,
ps,
),
).start()
else:
cmd = (
config.python_cmd
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
% (
now_dir,
exp_dir,
)
)
logger.info("Execute: " + cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
p.wait()
done = [True]
while 1:
with open(
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
) as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
# 对不同part分别开多进程
"""
n_part=int(sys.argv[1])
i_part=int(sys.argv[2])
i_gpu=sys.argv[3]
exp_dir=sys.argv[4]
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
"""
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = (
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s'
% (
config.python_cmd,
config.device,
leng,
idx,
n_g,
now_dir,
exp_dir,
version19,
config.is_half,
)
)
logger.info("Execute: " + cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi,
args=(
done,
ps,
),
).start()
while 1:
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
yield log
def get_pretrained_models(path_str, f0_str, sr2):
if_pretrained_generator_exist = os.access(
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if_pretrained_discriminator_exist = os.access(
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if not if_pretrained_generator_exist:
logger.warning(
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
if not if_pretrained_discriminator_exist:
logger.warning(
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
return (
(
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_generator_exist
else ""
),
(
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_discriminator_exist
else ""
),
)
def change_sr2(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
return get_pretrained_models(path_str, f0_str, sr2)
def change_version19(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
if sr2 == "32k" and version19 == "v1":
sr2 = "40k"
to_return_sr2 = (
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
if version19 == "v1"
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
)
f0_str = "f0" if if_f0_3 else ""
return (
*get_pretrained_models(path_str, f0_str, sr2),
to_return_sr2,
)
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
path_str = "" if version19 == "v1" else "_v2"
return (
{"visible": if_f0_3, "__type__": "update"},
{"visible": if_f0_3, "__type__": "update"},
*get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
)
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if if_f0_3:
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
logger.debug("Write filelist done")
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
logger.info("Use gpus: %s", str(gpus16))
if pretrained_G14 == "":
logger.info("No pretrained Generator")
if pretrained_D15 == "":
logger.info("No pretrained Discriminator")
if version19 == "v1" or sr2 == "40k":
config_path = "v1/%s.json" % sr2
else:
config_path = "v2/%s.json" % sr2
config_save_path = os.path.join(exp_dir, "config.json")
if not pathlib.Path(config_save_path).exists():
with open(config_save_path, "w", encoding="utf-8") as f:
json.dump(
config.json_config[config_path],
f,
ensure_ascii=False,
indent=4,
sort_keys=True,
)
f.write("\n")
if gpus16:
cmd = (
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
% (
config.python_cmd,
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
1 if if_save_latest13 == i18n("是") else 0,
1 if if_cache_gpu17 == i18n("是") else 0,
1 if if_save_every_weights18 == i18n("是") else 0,
version19,
)
)
else:
cmd = (
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
% (
config.python_cmd,
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
total_epoch11,
save_epoch10,
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
1 if if_save_latest13 == i18n("是") else 0,
1 if if_cache_gpu17 == i18n("是") else 0,
1 if if_save_every_weights18 == i18n("是") else 0,
version19,
)
)
logger.info("Execute: " + cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1, version19):
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
exp_dir = "logs/%s" % (exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if not os.path.exists(feature_dir):
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
infos = []
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
yield "\n".join(infos)
try:
big_npy = (
MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256 * config.n_cpu,
compute_labels=False,
init="random",
)
.fit(big_npy)
.cluster_centers_
)
except:
info = traceback.format_exc()
logger.info(info)
infos.append(info)
yield "\n".join(infos)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
infos.append(
"成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
)
try:
link = os.link if platform.system() == "Windows" else os.symlink
link(
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
"%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (
outside_index_root,
exp_dir1,
n_ivf,
index_ivf.nprobe,
exp_dir1,
version19,
),
)
infos.append("链接索引到外部-%s" % (outside_index_root))
except:
infos.append("链接索引到外部-%s失败" % (outside_index_root))
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
):
infos = []
def get_info_str(strr):
infos.append(strr)
return "\n".join(infos)
# step1:处理数据
yield get_info_str(i18n("step1:正在处理数据"))
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
# step2a:提取音高
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
[
get_info_str(_)
for _ in extract_f0_feature(
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
)
]
# step3a:训练模型
yield get_info_str(i18n("step3a:正在训练模型"))
click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
)
yield get_info_str(
i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
)
# step3b:训练索引
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
yield get_info_str(i18n("全流程结束!"))
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
try:
with open(
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
) as f:
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
sr, f0 = info["sample_rate"], info["if_f0"]
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
return sr, str(f0), version
except:
traceback.print_exc()
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
F0GPUVisible = config.dml == False
def change_f0_method(f0method8):
if f0method8 == "rmvpe_gpu":
visible = F0GPUVisible
else:
visible = False
return {"visible": visible, "__type__": "update"}
with gr.Blocks(title="RVC WebUI") as app:
gr.Markdown("## RVC WebUI")
gr.Markdown(
value=i18n(
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
)
)
with gr.Tabs():
with gr.TabItem(i18n("模型推理")):
with gr.Row():
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
with gr.Column():
refresh_button = gr.Button(
i18n("刷新音色列表和索引路径"), variant="primary"
)
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
clean_button.click(
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
)
with gr.TabItem(i18n("单次推理")):
with gr.Group():
with gr.Row():
with gr.Column():
vc_transform0 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
value=0,
)
input_audio0 = gr.Textbox(
label=i18n(
"输入待处理音频文件路径(默认是正确格式示例)"
),
placeholder="C:\\Users\\Desktop\\audio_example.wav",
)
file_index1 = gr.Textbox(
label=i18n(
"特征检索库文件路径,为空则使用下拉的选择结果"
),
placeholder="C:\\Users\\Desktop\\model_example.index",
interactive=True,
)
file_index2 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
f0method0 = gr.Radio(
label=i18n(
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=(
["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"]
),
value="rmvpe",
interactive=True,
)
with gr.Column():
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n(
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
),
value=0.25,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
value=0.33,
step=0.01,
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
),
value=3,
step=1,
interactive=True,
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.75,
interactive=True,
)
f0_file = gr.File(
label=i18n(
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"
),
visible=False,
)
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[sid0, file_index2],
api_name="infer_refresh",
)
# file_big_npy1 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
with gr.Group():
with gr.Column():
but0 = gr.Button(i18n("转换"), variant="primary")
with gr.Row():
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(
label=i18n("输出音频(右下角三个点,点了可以下载)")
)
but0.click(
vc.vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
# file_big_npy1,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
api_name="infer_convert",
)
with gr.TabItem(i18n("批量推理")):
gr.Markdown(
value=i18n(
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. "
)
)
with gr.Row():
with gr.Column():
vc_transform1 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
value=0,
)
opt_input = gr.Textbox(
label=i18n("指定输出文件夹"), value="opt"
)
file_index3 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
)
file_index4 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
f0method1 = gr.Radio(
label=i18n(
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=(
["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"]
),
value="rmvpe",
interactive=True,
)
format1 = gr.Radio(
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
value="wav",
interactive=True,
)
refresh_button.click(
fn=lambda: change_choices()[1],
inputs=[],
outputs=file_index4,
api_name="infer_refresh_batch",
)
# file_big_npy2 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
with gr.Column():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n(
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
),
value=1,
interactive=True,
)
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
value=0.33,
step=0.01,
interactive=True,
)
filter_radius1 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
),
value=3,
step=1,
interactive=True,
)
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=1,
interactive=True,
)
with gr.Row():
dir_input = gr.Textbox(
label=i18n(
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"
),
placeholder="C:\\Users\\Desktop\\input_vocal_dir",
)
inputs = gr.File(
file_count="multiple",
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
)
with gr.Row():
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc.vc_multi,
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index3,
file_index4,
# file_big_npy2,
index_rate2,
filter_radius1,
resample_sr1,
rms_mix_rate1,
protect1,
format1,
],
[vc_output3],
api_name="infer_convert_batch",
)
sid0.change(
fn=vc.get_vc,
inputs=[sid0, protect0, protect1],
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
api_name="infer_change_voice",
)
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=i18n(
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
)
)
with gr.Row():
with gr.Column():
dir_wav_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径"),
placeholder="C:\\Users\\Desktop\\todo-songs",
)
wav_inputs = gr.File(
file_count="multiple",
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
)
with gr.Column():
model_choose = gr.Dropdown(
label=i18n("模型"), choices=uvr5_names
)
agg = gr.Slider(
minimum=0,
maximum=20,
step=1,
label="人声提取激进程度",
value=10,
interactive=True,
visible=False, # 先不开放调整
)
opt_vocal_root = gr.Textbox(
label=i18n("指定输出主人声文件夹"), value="opt"
)
opt_ins_root = gr.Textbox(
label=i18n("指定输出非主人声文件夹"), value="opt"
)
format0 = gr.Radio(
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
value="flac",
interactive=True,
)
but2 = gr.Button(i18n("转换"), variant="primary")
vc_output4 = gr.Textbox(label=i18n("输出信息"))
but2.click(
uvr,
[
model_choose,
dir_wav_input,
opt_vocal_root,
wav_inputs,
opt_ins_root,
agg,
format0,
],
[vc_output4],
api_name="uvr_convert",
)
with gr.TabItem(i18n("训练")):
gr.Markdown(
value=i18n(
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
)
)
with gr.Row():
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
sr2 = gr.Radio(
label=i18n("目标采样率"),
choices=["40k", "48k"],
value="40k",
interactive=True,
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=[True, False],
value=True,
interactive=True,
)
version19 = gr.Radio(
label=i18n("版本"),
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=True,
)
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label=i18n("提取音高和处理数据使用的CPU进程数"),
value=int(np.ceil(config.n_cpu / 1.5)),
interactive=True,
)
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
gr.Markdown(
value=i18n(
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
)
)
with gr.Row():
trainset_dir4 = gr.Textbox(
label=i18n("输入训练文件夹路径"),
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("请指定说话人id"),
value=0,
interactive=True,
)
but1 = gr.Button(i18n("处理数据"), variant="primary")
info1 = gr.Textbox(label=i18n("输出信息"), value="")
but1.click(
preprocess_dataset,
[trainset_dir4, exp_dir1, sr2, np7],
[info1],
api_name="train_preprocess",
)
with gr.Group():
gr.Markdown(
value=i18n(
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
)
)
with gr.Row():
with gr.Column():
gpus6 = gr.Textbox(
label=i18n(
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
),
value=gpus,
interactive=True,
visible=F0GPUVisible,
)
gpu_info9 = gr.Textbox(
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
)
with gr.Column():
f0method8 = gr.Radio(
label=i18n(
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
),
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
value="rmvpe_gpu",
interactive=True,
)
gpus_rmvpe = gr.Textbox(
label=i18n(
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
),
value="%s-%s" % (gpus, gpus),
interactive=True,
visible=F0GPUVisible,
)
but2 = gr.Button(i18n("特征提取"), variant="primary")
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
f0method8.change(
fn=change_f0_method,
inputs=[f0method8],
outputs=[gpus_rmvpe],
)
but2.click(
extract_f0_feature,
[
gpus6,
np7,
f0method8,
if_f0_3,
exp_dir1,
version19,
gpus_rmvpe,
],
[info2],
api_name="train_extract_f0_feature",
)
with gr.Group():
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
with gr.Row():
save_epoch10 = gr.Slider(
minimum=1,
maximum=50,
step=1,
label=i18n("保存频率save_every_epoch"),
value=5,
interactive=True,
)
total_epoch11 = gr.Slider(
minimum=2,
maximum=1000,
step=1,
label=i18n("总训练轮数total_epoch"),
value=20,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label=i18n("每张显卡的batch_size"),
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
choices=[i18n("是"), i18n("否")],
value=i18n("否"),
interactive=True,
)
if_cache_gpu17 = gr.Radio(
label=i18n(
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
),
choices=[i18n("是"), i18n("否")],
value=i18n("否"),
interactive=True,
)
if_save_every_weights18 = gr.Radio(
label=i18n(
"是否在每次保存时间点将最终小模型保存至weights文件夹"
),
choices=[i18n("是"), i18n("否")],
value=i18n("否"),
interactive=True,
)
with gr.Row():
pretrained_G14 = gr.Textbox(
label=i18n("加载预训练底模G路径"),
value="assets/pretrained_v2/f0G40k.pth",
interactive=True,
)
pretrained_D15 = gr.Textbox(
label=i18n("加载预训练底模D路径"),
value="assets/pretrained_v2/f0D40k.pth",
interactive=True,
)
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15],
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, sr2],
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2, version19],
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
)
gpus16 = gr.Textbox(
label=i18n(
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
),
value=gpus,
interactive=True,
)
but3 = gr.Button(i18n("训练模型"), variant="primary")
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
but5 = gr.Button(i18n("一键训练"), variant="primary")
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
info3,
api_name="train_start",
)
but4.click(train_index, [exp_dir1, version19], info3)
but5.click(
train1key,
[
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
],
info3,
api_name="train_start_all",
)
with gr.TabItem(i18n("ckpt处理")):
with gr.Group():
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
with gr.Row():
ckpt_a = gr.Textbox(
label=i18n("A模型路径"), value="", interactive=True
)
ckpt_b = gr.Textbox(
label=i18n("B模型路径"), value="", interactive=True
)
alpha_a = gr.Slider(
minimum=0,
maximum=1,
label=i18n("A模型权重"),
value=0.5,
interactive=True,
)
with gr.Row():
sr_ = gr.Radio(
label=i18n("目标采样率"),
choices=["40k", "48k"],
value="40k",
interactive=True,
)
if_f0_ = gr.Radio(
label=i18n("模型是否带音高指导"),
choices=[i18n("是"), i18n("否")],
value=i18n("是"),
interactive=True,
)
info__ = gr.Textbox(
label=i18n("要置入的模型信息"),
value="",
max_lines=8,
interactive=True,
)
name_to_save0 = gr.Textbox(
label=i18n("保存的模型名不带后缀"),
value="",
max_lines=1,
interactive=True,
)
version_2 = gr.Radio(
label=i18n("模型版本型号"),
choices=["v1", "v2"],
value="v1",
interactive=True,
)
with gr.Row():
but6 = gr.Button(i18n("融合"), variant="primary")
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but6.click(
merge,
[
ckpt_a,
ckpt_b,
alpha_a,
sr_,
if_f0_,
info__,
name_to_save0,
version_2,
],
info4,
api_name="ckpt_merge",
) # def merge(path1,path2,alpha1,sr,f0,info):
with gr.Group():
gr.Markdown(
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
)
with gr.Row():
ckpt_path0 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
info_ = gr.Textbox(
label=i18n("要改的模型信息"),
value="",
max_lines=8,
interactive=True,
)
name_to_save1 = gr.Textbox(
label=i18n("保存的文件名, 默认空为和源文件同名"),
value="",
max_lines=8,
interactive=True,
)
with gr.Row():
but7 = gr.Button(i18n("修改"), variant="primary")
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but7.click(
change_info,
[ckpt_path0, info_, name_to_save1],
info5,
api_name="ckpt_modify",
)
with gr.Group():
gr.Markdown(
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
)
with gr.Row():
ckpt_path1 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
but8 = gr.Button(i18n("查看"), variant="primary")
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
with gr.Group():
gr.Markdown(
value=i18n(
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
)
)
with gr.Row():
ckpt_path2 = gr.Textbox(
label=i18n("模型路径"),
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
interactive=True,
)
save_name = gr.Textbox(
label=i18n("保存名"), value="", interactive=True
)
sr__ = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
if_f0__ = gr.Radio(
label=i18n("模型是否带音高指导,1是0否"),
choices=["1", "0"],
value="1",
interactive=True,
)
version_1 = gr.Radio(
label=i18n("模型版本型号"),
choices=["v1", "v2"],
value="v2",
interactive=True,
)
info___ = gr.Textbox(
label=i18n("要置入的模型信息"),
value="",
max_lines=8,
interactive=True,
)
but9 = gr.Button(i18n("提取"), variant="primary")
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
ckpt_path2.change(
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
)
but9.click(
extract_small_model,
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
info7,
api_name="ckpt_extract",
)
with gr.TabItem(i18n("Onnx导出")):
with gr.Row():
ckpt_dir = gr.Textbox(
label=i18n("RVC模型路径"), value="", interactive=True
)
with gr.Row():
onnx_dir = gr.Textbox(
label=i18n("Onnx输出路径"), value="", interactive=True
)
with gr.Row():
infoOnnx = gr.Label(label="info")
with gr.Row():
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
butOnnx.click(
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
)
tab_faq = i18n("常见问题解答")
with gr.TabItem(tab_faq):
try:
if tab_faq == "常见问题解答":
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
info = f.read()
else:
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
info = f.read()
gr.Markdown(value=info)
except:
gr.Markdown(traceback.format_exc())
if config.iscolab:
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
else:
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
)